состав, свойства и применение материала лавсан.

Описание:
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Чувашский государственный университет имени И.Н. Ульянова»

Реферат

На тему: состав, свойства и применение материала лавсан.


Выполнил:

студент  группы ЗЭЭ-12-15

Васильев Д.А.

Проверил:

преподаватель

Кравченко Г.А.


г. Чебоксары 2016

Получение полиэтилентерефталата

Полиэтилентерефталат (ПЭТФ) является полимером пара-(тере)фталевой кислоты и этиленгликоля. Он может быть получен тремя способами: 

1) из хлорангидрида терефталевой кислоты и гликоля в среде инертного растворителя, в присутствии щелочного катализатора; 

2) при полиэтери-фикации терефталевой кислоты и гликоля, взятого в избытке, в присутствии катализаторов этерификации; 

3) переэтерификацией диметилтерефталата этиленгликолем с последующей поликонденсацией образовавшегося дигликольтерефталата.

Первые два способа не нашли широкого применения из-за ограниченности сырьевых ресурсов (хлорангидрида терефталевой кислоты) и трудности проведения процесса, осложняющегося тем, что терефталевая кислота не плавится (возгоняется при 300° С) и не растворяется в этиленгликоле.

В промышленности наибольшее распространение получил последний способ.

Полиэтилентерефталат получают поликонденсацией кристаллической терефталевой кислоты или ее диметилового эфира с жидким этиленгликолем по периодической или непрерывной схеме в две стадии :этерификации терефталевой и изофталевой кислот этиленгликолем и поликонденсации в присутствии катализатора — триоксида сурьмы.

По технико-экономическим показателям преимущество имеет непрерывный процесс получения полиэтилентерефталата из кислоты и этиленгликоля. Этерификацию кислоты этиленгликолем (молярное соотношение компонентов от 1:1,2 до 1:1,5) проводят при 240-270 °С и давлении 0,1-0,2 МПа.

Полученную смесь бис-(2-гидроксиэтил) терефталата с его олигомерами подвергают поликонденсации в нескольких последовательно расположенных аппаратах, снабженных мешалками, при постепенном повышении температуры от 270 до 300 °С и снижении давления от 6600 до 66 Па.

Первая стадия, поликонденсация, включает в себя несколько последовательных процессов. Во-первых, это смешение всех компонентов: основного сырья, различных добавок, необходимых катализаторов и др. Во-вторых, следующим этапом производства полиэтилентерефталата является этерификация, представляющая собой процесс, характеризующийся получением сложных эфиров из различных спиртов и кислот.

Два таких смежных процесса, как предполиконденсация и непосредственно поликонденсация объединяются на одном этапе. Здесь осуществляется синтез полимеров, который сопровождается выделением побочных продуктов реакции (низкомолекулярные соединения). Заключительным моментом первой стадии производства полиэтилентерефталата является процесс гранулирования. Из аморфного полимера, обладающего низкой степенью вязкости получают бесцветные гранулы.

Вторая стадия получения ПЭТ, характерная для классической технологии производства этого материала, является твердофазной дополиконденсацией. Процесс представляет собой последовательное охлаждение и нагревание полученных гранул. Они нагреваются до высоких температур, что способствует повышению молекулярной массы продукта и, как следствие, увеличение степени вязкости полимера.

Также существует технология получения полиэтилентерефталата из диметилтерефталата.

После завершения процесса, расплав полиэтилентерефталата выдавливается из аппарата, охлаждается (при быстром охлаждении получают аморфный ПЭТ, при медленном – кристаллический) и гранулируется (товарный ПЭТ выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра) или направляется на формование волокна. Матирующие агенты (TiO2), красители, инертные наполнители (каолин, тальк), антипирены, термо-, светостабилизаторы и другие добавки вводят во время синтеза или в полученный расплав полиэтилентерефталата.

В последнее время в мире широкое распространение получил одностадийный синтез ПЭТФ из этиленгликоля и терефталевой кислоты (TFK) по непрерывной схеме. И именно данный способ признается весьма перспективным.

[7].

Строение полиэтилентерефталата

Полиэтилентерефталат является продуктом поликонденсации терефталевой кислоты (OH)-(CO)-C6H4-(CO)-(OH) и моноэтиленгликоля (OH)-C2H4-(OH). В процессе поликонденсации образуется линейная молекула полиэтилентерефталата [-O-(CH2)2-O-(CO)-C6H4-(CO)-] n и вода. Молекулярная масса полиэтилентерефталата 20-40 тыс.

Фениленовая группа C6H4 в основной цепи придает жесткость скелету молекулы полиэтилентерефталата и повышает температуру стеклования и температуру плавления полимерного материала. Регулярность строения полимерной цепи повышает способность к кристаллизации полиэтилентерефталата, которая в значительной степени определяет механические свойства и которой можно управлять, поскольку степень кристалличности полиэтилентерефталата зависит от способа его получения и обработки.

Возможность управления кристалличностью полиэтилентерефталата существенно расширяет спектр его применения. Так, например, подвергая аморфный ПЭТ двухосному растяжению при температуре выше температуры стеклования для создания кристалличности, получают материал с замечательными барьерными свойствами для изготовления бутылок для газированных напитков.

Максимальная степень кристалличности неориентированного полиэтилентерефталата - 40-45%, ориентированного - 60-65%.

Структура полиэтилентерефталата обусловливает его особенности, а именно: прочность относительно механического воздействия (в том числе ударопрочность), устойчивость к агрессивной химической среде, великолепная эластичность, как холодном, так и в нагретом состоянии.

Химические свойства

Полиэтилентерефталат имеет высокую химическую стойкость к бензину, маслам, жирам, спиртам, эфиру, разбавленным кислотам и щелочам. Полиэтилентерефталат не растворим в воде и многих органических растворителях, растворим лишь при 40-1500С в фенолах и их алкил- и хлорзамещенных, анилине бензиловом спирте, хлороформе, пиридине, дихлоруксусной и хлорсульфоновой кислотах, метиленхлориде, метилэтилкетоне, этилацетате, четыреххлористом углероде и др.. Неустойчив к кетонам, сильным кислотам и щелочам.

Материал не обладает химической стойкостью к воздействию ацетона, хлорбензола, хлороформа, метиленхлорида, хлорэтилена, трихлорэтилена, тетрагидрофурана, горячей воды (выше +600С), концентрированной уксусной кислоты, 40% плавиковой кислоты, 10% водного раствора щелочи калия, 50% водного щелочного раствора углекислого натрия, водного раствора карболовой кислоты, 36% раствора соляной кислоты, 2% водного раствора серной кислоты.

Имеет повышенную устойчивость к действию водяного пара.

Для оценки молекулярной массы методом вискозиметрии используют растворы полиэтилентерефталата в технической смеси крезолов, о-хлорфеноле, смеси фенолтетрахлорэтана (1:1) и др. Обладает низкой гигроскопичностью (водопоглощение обычно 0,4-0,5%), которая зависит от фазового состояния полимера и относительной влажности воздуха

Из химических свойств полиэтилентерефталата стоит особо отметить его физиологическую инертность, позволяющую материалу напрямую контактировать с пищевыми и фармакологическими продуктами, отличную сопротивляемостью окрашиванию, устойчивость к действию многочисленных моющих средств, высокую устойчивость к воздействию кислот и вместе с тем легкую склеиваемость.

Физические свойства

Аморфный полиэтилентерефталат – твердый прозрачный с серовато-желтоватым оттенком; кристаллический – твердый, непрозрачный, бесцветный. Отличается низким коэффициентом трения (в том числе и для марок, содержащих стекловолокно). Характеризуется высокой термостойкостью расплава (2900С); деструкция на воздухе начинается при температуре на 500С ниже, чем в инертной среде. Полиэтилентерефталат прочный, жёсткий и лёгкий материал. Пластик не ядовит. [3]

Полиэтилентерефталат обладает высокой механической прочностью и ударостойкостью, устойчивостью к истиранию и многократным деформациям при растяжении и изгибе и сохраняет свои высокие ударостойкие и прочностные характеристики в рабочем диапазоне температур от –40. °С до +60 °С. [8]

ПЭТ отличается низким коэффициентом трения и низкой гигроскопичностью. Разлагается под действием УФ-излучения. Общий диапазон рабочих температур изделий из полиэтилентерефталата от -60 до 170 °C.

По внешнему виду и по светопропусканию (90%) листы из ПЭТ аналогичны прозрачному оргстеклу (акрилу) и поликарбонату. Однако по сравнению с оргстеклом у полиэтилентерефталата ударная прочность в 10 раз больше.

ПЭТ – хороший диэлектрик, электрические свойства полиэтилентерефталата при температурах до 180.°С даже в присутствии влаги изменяются незначительно.

Механические свойства

Растяги-вающее напря-жение на выходе при разрыве

Удли-нение при раз-рыве

Коэффи-циент растя-жения эласти-чности

Испыта-ние на сжатие 1% напря-жение 1000 час.

Удар-ная вяз-кость по Шарпи 7,5 Дж

Испы-тания на удар образца с надрезом (Шарпи), (КДж/м)

Опре-деление твер-дости вдав-ливанием шарика, (Н/мм2)

Твер-дость по Рок-веллу (сухой)

Коэф-фициент трения со сталью

(Н/мм2)

(%)

(Н/мм2)

(Н/мм2)

(КДж/м)

85

50

3100

20

n.b.

5

170

М95

0,25

Использование в электротехнике: превосходные электрические свойства (стабильность при продолжительном периоде работы) делают ПЕТ подходящим для производства изоляторов и других электрических деталей.

Диэлектрики с электронной, ионной и релаксационными поляризациями., обладающие одновременно электронной и дипольно-релаксационной поляризациями. К ним принадлежат полярные (дипольные) органические, полужидкие и твердые вещества (масляно-канифольные компаунды, эпоксидные смолы, целлюлоза), а также некоторые хлорированные углеводороды.

Таблица 1. Значения ε и tgδ для некоторых твёрдых диэлектриков.

Наименование

ε

tg, δ

Органические диэлектрики

Полярные

Поливинилхлорид

3,5-4,5

0,02-0,05

Лавсан

3,0-3,5

0,002-0,05

Механизмы пробоя

У твёрдых диэлектриков могут наблюдаться три основных механизма пробоя:

1) электрический;

2) тепловой;

3) электрохимический.

Каждый из указанных механизмов пробоя может иметь место в одном и том же материале в зависимости от характера электрического поля, в котором он находится, – постоянного или переменного, импульсного, низкой или высокой частоты; времени воздействия напряжения; наличия в диэлектрике дефектов, в частности закрытых пор; толщины материала; условий охлаждения и т. д.

Электрический пробой по своей природе является чисто электронным процессом, когда из немногих начальных электронов в твёрдом теле создается электронная лавина. Развитие лавин сопровождается фотоионизацией (как в газах), которая ускоряет образование проводящего канала. Ускоренные полем электроны при столкновениях передают свою энергию узлам решётки и разогревают её вплоть до плавления. В разрядном канале создается значительное давление, которое может привести к появлению трещин или полному разрушению изолятора. Электрический пробой имеет место там, где исключено влияние электропроводности и диэлектрических потерь, нагревающих материал, а также отсутствует ионизация газовых включений. При этом электрическая прочность Епр может превышать 1000 МВ/м. Электрический пробой наблюдается у большинства диэлектриков при кратком (импульсном) воздействии напряжения.

Тепловой пробой возникает в том случае, когда количество тепловой энергии, выделяющейся в диэлектрике за счёт диэлектрических потерь, превышает то количество энергии, которое может рассеиваться в данных условиях; при этом нарушается тепловое равновесие и процесс приобретает необратимый характер. Явление теплового пробоя сводится к разогреву материала в электрическом поле до температур, соответствующих расплавлению, обугливанию и пр. Электрическая прочность при тепловом пробое является характеристикой не только материала, но и изделия из него.

Пробивное напряжение, обусловленное нагревом диэлектрика, свя зано с частотой напряжения, условиями охлаждения, температурой окружающей среды и др. Кроме того, «электротепловое» пробивное напряжение зависит от нагревостойкости материала; органические диэлектрики (например, полистирол) имеют более низкие значения электротепловых пробивных напряжений, чем неорганические (кварц, керамика) при прочих равных условиях вследствие их малой нагревостойкости. Типичными признаками теплового пробоя является уменьшение пробивного напряжения по экспоненте с ростом температуры, а также временная задержка пробоя.

Разновидностью теплового пробоя можно считать ионизационный пробой. Он характерен для твёрдых пористых диэлектриков, обусловлен ионизацией газа в порах и особенно опасен в хрупких материалах, поскольку термомеханические напряжения могут превзойти предел прочности материала и вызвать его растрескивание.

Тонкие плёнки обладают существенно более высокой электрической прочностью, чем массивные образцы благодаря упорядоченной структуре и лучшему охлаждению.

Электрохимический пробой электротехнических материалов наблюдается при повышенных температурах и высокой влажности.

При постоянном и переменном напряжении низкой частоты в материале развиваются процессы, приводящие к необратимому уменьшению сопротивления изоляции (электрохимическое старение). Кроме того, электрохимический пробой можно наблюдать при высоких частотах, если в закрытых порах материала происходит ионизация газа, сопровождающаяся нагревом и восстановлением, например в керамике, окислов металлов переменной валентности. Электрохимический пробой развивается во многих органических диэлектриках, особенно под действием частичных разрядов (см. выше). Частичные разряды (ЧР) происходят в местах наибольшей напряжённости электрического поля, там, где наблюдается его неоднородность. Разрушение изоляции происходит в виде специфических дефектов, которые раньше называли водяными дендритами (гр. dendron – дерево), а теперь используют термин водные триинги (англ. tree – дерево). Дендрит прорастает в изоляционный слой подобно корням дерева, при этом постепенно увеличивается мощность разряда, а эффективная толщина изоляции уменьшается, что, в конце концов, приводит к пробою. Процессы прорастания дендритов длятся годами и десятилетиями, современный уровень развития техники позволяет их контролировать, прогнозируя момент выхода электрооборудования из строя и оценивая остаточный ресурс службы.

Рисунок 4.8 – График зависимости диэлектрической проницаемости полярного диэлектрика от температуры.

.
 
Рис. 56. Зависимость диэлектрической проницаемости от частоты напряжения:
1 — нейтральный диэлектрик, 2 — полярный диэлектрик


 
Рис. 57. Зависимость диэлектрической проницаемости от температуры диэлектрика:
1 — нейтральный диэлектрик, 2 — полярный диэлектрик

При увеличении f ε сначала остается неизменной, но, начиная с некоторой критической частоты, ε начинает снижаться, приближаясь к значениям ε для неполярных диэлектриков. Это снижение ε происходит из-за того, что частота прикладываемого поля становится большой и поляризация не успевает установиться за полупериод напряжения, т.е. диполи не успевают соориентироваться под действием такого поля.

Электрическое свойства пластмасс

Название пластмассы

Диэлектрическая проницаемость

Удельное электрическое сопротивление, Ом м

Гетинакс

4,5-8,0

109-1012

Капрон

3,6-5,0

1010-1011

Лавсан

3,0-3,5

1014-1016

Электрические свойства

Диэлектрическая константа при 1МГц

Электрическая прочность диэлектрика,

Объемное удельное сопротивление,

Коэффициент рассеяния тангенс потерь при 1 МГц

(кВ/мм)

(Ом/см)

3,2

60

1016

0,01

Список использованной литературы

1) Наука и человечество// Международный ежегодник.- М.: Знание,1976.-с.16-18

2) http://www.polymerbranch.com

3) Гуль В.Е. Структура и механические свойства полимеров.- М.: Высшая школа,1966.-с.28

4) http://www.helvetica-t.ru

5)  Григорьев Г.П. Полимерные материалы.- М.: Химия, 1972.-с.41-43

6) Несмеянов А.Н. Начала органической химии.- Москва,1970- 2 том. - с.179

7) Воюцкий С.С. Курс коллоидной химии.- М.: Химия, 1975.- с.420

8) Краткий курс химической технологии волокнистых материалов. - М.: Легкая и пищевая промышленность, 1984.- с.98

9) Захарченко В.Н. Коллоидная химия. - М.: Высшая школа,1989.-с.201

10) Нифантьев Э.Е. Основы прикладной химии. - М.: Владос,2002.-с.18

11) http://www.polymery.ru/material.

12) http://aizol.com.ua/materials/konstplast/tecapet.html

13) Русаков П.В. Производство полимеров.- М.: высшая школа,1988.- с.218

Информация о файле
Название файла состав, свойства и применение материала лавсан. от пользователя holilec
Дата добавления 10.5.2020, 19:45
Дата обновления 10.5.2020, 19:45
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 59.15 килобайт (Примерное время скачивания)
Просмотров 751
Скачиваний 100
Оценить файл