Для того чтобы получить это св-во с любым числом последовательностей
нужно применить метод мат. индукции.
Свойство 4. Сумма б.б. одного знака снова б.б. того же знака
Док-во: Очивиднл.
Неопределённые интегралы.
def / F(x) называется первообразной
для f(x) на [a;b] если F ¢(x)=f(x)
У непрерывной функции первообразная
всегда есть.
Теорема: Различные первообразные
одной и той же функции отличаются
на одно и тоже постоянное слагаемое.
Док-во: F1(x) и F2(x) – первообразные для f(x)
F(x)= F1(x)- F2(x)
F ¢(x)= F1¢(x)- F1¢(x)=f(x)-f(x)=0
F(x)=const
Def / Совокупность всех первообразных одной
и той же функции называется её
неопределённым интегралом.



Св-ва линейности:

Замена переменных в неопределённом интеграле
или методом подстановки.
Теорема: Пусть функция x=
x(t): (a;b)®(a;b), xÎC1(a;b), fÎC(a;b)
1) 
½x=x(t)
2) Если x¢(t) сохраняет знак, тогда

½t=t(x)
Док-во: 1) d/dxF(x(t))=F ¢(x(t))x¢(t)=f(x(t))x¢(t)
2) x(t) – строго монотонная Þ $обратная t=t(x)

½t=t(x)
Интегрирование по частям.

Рекуррентная формула.

y=a+bx2 y¢=2bx xy¢=2bx2=2(y-a)
U=1/yn dx=dV dU=(-ny¢/yn+1)dx V=x


In=x/yn+2nIn-2naIn+1
1) In+1=(1/2na)(x/yn+(2n-1)In),
n¹0, a¹0
2) In=(1/(2n-1))(2naIn+1-x/yn),
n¹1/2, a¹0
Поле комплексных чисел.
(x;y)=(x;0)+(y;0)(0;1)=x+yi
– алгебраическая запись комплексного числа
Чертёж :