Токсини водоростей та морських безхребетних

Описание:
Тип работы: реферат
Пошук і вивчення токсинів з водоростей та морських безхребетних. Синьо-зелені водорості та їх токсини. Негативна дія та вплив синьо-зелених водоростей на живі організми. Морські безхребетні та їх типи. Токсин мікроцистин, продуцент афантотоксинів.
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Міністерство освіти і науки України

Львівський національний університет імені Івана Франка

Реферат

на тему:

«Токсини водоростей та морських безхребетних»

Підготувала

студент групи ХМХ-43

Горон Роман

Львів-2010


Вступ

водорость морський безхребетний

Яди біологічного походження називаються токсинами. Токсин (від грец. toxikon — «отрута для використання на стрілах») — отруйна речовина, що виробляється живими клітинами або організмами. Токсини майже завжди є білками, здатними до породження хвороби або й навіть можуть викликати смерть. Важкі отруєння людей та тварин, води прісноводних та морських водойм обумовлені масовим розмноженням («цвітіння» води) токсичних водоростей. Їх токсичні продукти накопичуються в об^єктах другої ланки екологічного ланцюга (молюски, риби), через які передаються відповідно у третю ланку (наземні тварини та людина). Не виключене отруєння травоїдних на водопої при попаданні в шлунок зараженої води та фітопланктону, а також при купанні під час «цвітіння» води. Під час "цвітіння" води у ній утворюється значна біомаса (більше 100–200 г/л та міліони клітин синьозелених водоростей).

Значна частина біомаси мешканців моря припадає на частку безхребетних. Серед них чимало отруйних видів, які належать різним таксонам: губки, кишковопорожнинні, черви, молюски, голкошкірі. У вирішенні проблеми комплексної утилізації продуктів моря важливе значення надається отруйним безхребетним, багато з яких є продуцентами біологічно активних речовин з потенційно корисними властивостями.
Особливий інтерес у дослідників викликає та обставина, що гідробіонти часто продукують оригінальні структурні з"єднання, що не зустрічаються у мешканців суші. Не менш важливо знати і особливості вражаючої дії отруйних тварин моря в профілактичних і лікувальних цілях.

Вже кілька десятиліть відбувається інтенсивний пошук і вивчення токсинів з водоростей та морських безхребетних. В результаті цього є виявлення та встановлення будови багатьох незвичайних природних сполук нових типів, і, судячи зі зростаючого інтересу до такого роду досліджень, водні і морські організми ще довго будуть багатим джерелом нових речовин з різноманітними біологічними властивостями. Перший класичний опис «червоних припливів» знаходиться в Біблії: «І вся вода в ріці перетворилась в кров. І риба в річці вимерла, і ріка почала неприємно пахнути, і Єгиптяни не могли пити воду з ріки; і була кров по всій Землі Єгипетській…». Причина цього явища на мілководних частинах моря або поблизу узбережжя, вперше встановлена у 1928р. Г.Соммером. Вона полягає у масовому розмноженні токсичних мікроводоростей дінофлагелатів, головним чином родів Gonyaulax, Glenodinium, Peridinium, Gyrodinium, Noctiluca і Gymnodinium, в результаті чого вода виявляється зараженою їх токсинами і майже всі решта морські мешканці гинуть або рятуються, втікаючи.


Дінофлагелят Gonyaulax tamarensis

З токсичних водоростей (Algae ) найбільш важливе токсикологічне й екологічне значення мають токсини синьо-зелених водоростей.

Синьо-зелені водорості є найбільш древнім примітивним відділом фотосинтезуючих нижчих організмів. Вони класифікуються як ціанобактерії й представлені одно-, багатоклітинними й колоніальними формами, що входять до складу планктонів, бентосу й педоценозів. Поряд з фотосинтезом у синьо-зелених водоростей добре розвинутий міксотрофізм (тобто харчування готовими органічними речовинами подібно до грибів), який дозволяє їм харчуватися не тільки мінеральними, але й готовими органічними сполуками, тобто при нестачі в середовищі мінеральних солей, вони тимчасово переходять на міксотрофний тип харчування.

При сприятливих умовах активно розвиваються мікроцистіс, афанізоменон і анабена (явище "цвітіння" води). За вегетаційний період (70 діб) одна материнська клітина водорості може дати близько 1020 дочірніх клітин.

Прижиттєві й посмертні виділення цих водоростей є найсильнішими токсинами, які поєднуються загальною назвою ціанотоксини. Ціанотоксини добре розчинні у воді, безбарвні, не мають запаху, досить стійкі (не руйнуються кип"ятінням), що сприяє їхньому нагромадженню у харчовому ланцюгу й потраплянню в організм тварин і людини.

У більшості синьо-зелених водоростей найбільш активне утворення токсинів відбувається при рН середовища 8,5 - 10,0 і температурі води 25-28°С.

Альготоксини (токсини водоростей) зберігають свою початкову активність у водному середовищі протягом 20-ти діб й погіршують органолептичні показники води.

Наприклад, приведемо характеристику запахів, специфічних для токсинів деяких родів планктонних водоростей:

-  Asterionella - при незначному розвитку водоростей ― слабкий землистий запах; при значному ― запах герані; при дуже великому ― сильний рибний запах;

-  Tabellaria - ароматний, геранієвий, рибний;

-  Pandorina- рибний;

-  Eudorina- слабкий рибний;

-  Aпаbаeпа - запах цвілі або трави; при великій чисельності водоростей ― запах красолі; при розкладанні водоростей ― запах свинячого хліва;

-  Aphanizomenon - запах цвілі, трави;

-  Coelosphaerium - запах свіжої трави.

Серед токсичних прісноводних синьо-зелених водоростей відома Anabaena flos-aquae,

Прісноводна синьо-зелена водорость Anabaena

токсичний штамм якої був причиною загибелі скота в Канаді в 1961р. В 1966р. з неї був виділений анатоксин А (2-ацетил-9-азобіцикло(4-2-1)нон-2ен), будову якого встановлено в 1972р. рентгеноструктурним аналізом. Анатоксин А є сильним нейротоксином, що викликає в летальних дозах смерть протягом 2-7хв. Він знаходить широке застосування при вивченні процесів нервово-мязової передачі.

Анатоксин А

Він є потужним стереоспецифічним антагоністом Н-холінорецепторів. Анатоксин А блокує нервово-м^язову передачу по деполяризуючому типу, що проявляється сильною початковою контрактурою з подальшим повним паралічем скелетної та дихальної мускулатури. ЛД50 для мишей та щурів цієї отрути складає 0,5 мг/кг при внутрішньочеревинному введенні, 0,1–1 мг цього токсину пригнічує фермент холінестеразу.

Афанізоменон (Aphanisomenon flos-aquae) (L) Ralfs — продуцент термостабільних у кислому середовищі афантотоксинів, які містять неосакситоксин (90 %) та сакситоксин (10 %). Істотні зміни в токсичності водоростей пов"язані з різними стадіями росту водоростей. Токсичність збільшується зі збільшенням віку і щільності культури. Низька токсичність на ранніх стадіях розвитку водорості обумовлена особливостями обміну в культурі. Утворення токсину також залежить від температури і освітленості. Що стосується освітленості, то чим вона вище, тим більше утворюється токсину. Токсином Aphanizomenon flos-aquae є ендотоксин, який зберігається всередині здорових клітин і вивільняється тільки після їх лізису. Він є дуже активним блокуючим агентом для нервової та м"язової тканин. За хімічною природою він є похідним гуанідину, слабкою основою. Такі ж токсини були виділені у морських піридиній Gonyaulax та Q. amarensis. Механізм дії пояснюється тим, що гуанідинова група молекули вказаних токсинів застрягає в іонотранспортній ділянці Na+-каналу і блокує його.

Мікроцистіс сірувато-зелений (Microcystis aeruginosa) продукує поліпептидні токсини, зокрема мікроцистин, який містить L-тирозин, D-аланін, D-ізоглутамінову кислоту, бета-D-аспарагінову кислоту, N- метилдегідроаланін, L-метіонін; LD50 токсину становить 0,1 мкг для мишей при внутрішньочеревинному введенні.. Токсин викликає тромбоцитопенію з наступними крововиливами в легені та печінку, тромбози, збільшення печінки.

Мікроцистіс сірувато-зелений (Microcystis aeruginosa)

Що стосується дії на безхребетних, то мікроцистіс дуже токсичний для дафній, циклопів і коловерток. Цей токсин також спричиняє тромбоцитопенію, тромбоз легень, збільшення печінки. Розрізняють шлунково-кишкову, шкірно-алергічну, м^язову та змішану форми отруєнь токсинами синьозелених водоростей.

Масову загибель риби і інтоксикацію людей на берегах Флориди і в Мексиканській затоці викликає бреветоксин Ptychodiscus(Gymnodinium) breve.

 

 Ptychodiscus(Gymnodinium)breve

Він продукує цілу групу ліпофільних бреветоксинів, з яких найбільш активним є бреветоксин А.


 

Бреветоксин А

Основний вклад у дослідженні цих токсинів внесли групи К.Наканісі і Дж.Кларді (США), а структура бреветоксину А встановлена у 1986р. групами Ю.Шшиміцу(Канада) і Дж.Кларді (США). Бреветоксини ― незвичайні поліефірні сполуки, що складаються з 10-11 насичених оксигеновмісних циклів різної величини. Їхня токсичність зумовлена блокуванням нервово-мязової передачі.

При зараженні синьо-зеленими водоростями води водогінної мережі виникають масові отруєння типу токсичного гастроентериту, подібного до дизентерійного чи холерного. Захворювання після вживання зараженої синьозеленими водоростями риби (щука, судак, минь, окунь) починається раптово болем у м^язах верхніх та нижніх кінцівок, попереку, грудної клітини, ціанозом, сухістю в роті, блювотою, появою сечі темного кольору (міоглобін). При цьому можливий розвиток асфіксії через параліч дихальної мускулатури. Хвороба з таким синдромом отримала назву юксовсько-сартландської. Варто зазначити, що одним з показників забруднення води альготоксинами є її сильний рибний запах. В системі профілактичних заходів по попердженню масових отруєнь альготоксинами одне з основних місць посідає гідробіологічний контроль якості води. Для профілактики отруєнь альготоксинами потрібно проводити тривале кип^ятіння води, фільтрацію її через активоване вугілля, озонування води на водоочисних спорудах. Варто нагадати, що розповсюдженість, потенціальна можливість утворюватися у різних середовищах довкілля в природних умовах у великих кількостях, висока токсичність, здатність забруднювати ряд об^єктів довкілля у значних концентраціях та невідворотність контакту людини з цими токсикантами з наступним проникненням в організм різними шляхами (пероральний, аерогенний, черезшкірний) обумовлюють високий ризик масових гострих та хронічних отруєнь.

Хто не пам"ятає з дитинства сакраментальну фразу: «Чистота - запорука здоров"я»? Однак, як виявляється, в цієї медалі є й зворотний бік. Уже не перший рік екологи б"ють на сполох із приводу того, що зростання попиту на синтетичні мийні засоби, які посилено рекламуються по телебаченню, загрожує черговою екологічною кризою. Річ у тім, що в переважній більшості пральних порошків на нашому ринку основним компонентом є фосфатні сполуки, які потім разом зі стічною водою потрапляють у відкриті водойми. Навіть найсучасніші фільтри для очищення води неспроможні затримати їх. Осідаючи на дно, вони стають добривом для синьо-зелених водоростей, що починають активно розмножуватися, і вода «зацвітає». Всього один грам триполіфосфату натрію стимулює утворення 5-10 кілограмів водоростей. А за даними журналу «Бізнес», у 2002 році в Україні було продано 180-220 тисяч тонн пральних порошків. За мінімальними підрахунками, у воду потрапило 27 тисяч тонн триполіфосфату натрію. Не треба бути великим математиком, щоб оцінити масштаби можливої катастрофи. Зрештою, наслідки нашої боротьби за чистоту можна спостерігати неозброєним оком з весни до осені на будь-якій водоймі. Синьо-зелені водорості маленькі й безпечні лише на перший погляд. Їх активне розмноження призводить до погіршення смакових якостей води і виникнення неприємного запаху. Перевищення критичної маси водоростей активізує процес саморозкладу, що призводить до забирання з води кисню і виділення натомість метану, сірководню, аміаку, інших токсичних речовин. У результаті гинуть не лише риби. Відомі випадки масового отруєння домашніх тварин, що пили воду з водойм із синьо-зеленими водоростями. Особливу небезпеку може становити момент початкового етапу розкладу біомаси синьо-зелених, коли клітини мікроорганізмів не втратили в своїй більшості здатності до продукування альготоксинів, а азотомісткі компоненти відмерлих клітин починають розкладатися, виділяючи токсичні продукти розпаду. В останні роки було доведено, що, крім різних видів отруєнь, викликаних водоростями, токсини ціанобактерій активізують розвиток ракових клітин. Щороку смертність серед тих, хто споживає забруднену водоростями воду, в п"ять разів вища, ніж серед тих, хто п"є чисту воду. Досліди в Австралії показали: забруднення питної води синьо-зеленими водоростями призводить до невиношування вагітності, низької ваги новонароджених, уроджених каліцтв, пухлин шлунково-кишкового тракту, підвищення захворюваності та зниження тривалості життя. У спеку водойми можуть нагріватися настільки, що стають небезпечними для людей . Екологи знайшли у таких водах багато шкідливих бактерій і речовин, що дивуєшся наскільки живучі люди, які купаються. Все це відбувається через швидке розповсюдження водоростей та загибель молюсків у надто теплій воді. Юрій Плігін із Інституту гідробіології каже, що через високу температуру, яка часом сягає 29 градусів за Цельсієм, у водоймах гинуть молюски, які відповідають за природнє очищення води. "Ми беремо проби води, аналізуємо її і знаходимо тільки мертві мушлі молюсків. А вони профільтровують і освітляють воду. Зараз цей процес, на жаль, не відбувається. "Окрім відсутності природніх фільтрів води в озерах і особливо у водосховищах поширюються "підступні" синьо-зелені водорості. З одного боку вони продукують кисень і створюють кормову базу для риб. З іншого —виділяють у воду небезпечні органічні речовини (поліпептиди), які викликають алергічну реакцію. Це може бути висипання на шкірі, почервоніння, висока температура і навіть розлад шлунково-кишкового тракту, якщо під час купання людина ковтне трохи води із цими водоростями. Токсини, кажуть науковці, виділяються в товщу води. Тому у чутливих до алергічних реакцій людей такі симптоми можуть виникнути просто від купання у водоймі. Учені радять також остерігатися неглибоких озер та ставків із непроточною водою. Вони швидко нагріваються, і в таких водоймах, імовірно, більше розмножується бактерій. Це можуть бути стафілококи і стрептококи. Найменша подряпина і людина може інфікуватися.

У газеті «Дзеркало Тижня» за 2005 рік була опублікована стаття, в якій говорилося: «У Київському зоопарку справжня екологічна катастрофа – його атакували синьо-зелені водорості. В народі цей процес називають «цвітінням води». Вони заполонили водойми на території зоопарку, а це є досить загрозливим, адже синьо-зелені водорості не лише мають неприємний запах та колір, а ще й токсичні для більшості видів риб та водоплаваючих птахів. Токсини, що виділяються під час своєї життєдіяльності синьо-зелені водорості потрапляють до організму риб через зябра та шкіру, а також з їжею та викликають патолого-анатомічні зміни: крапково-плямисті крововиливи у шкіру, розлади нервової системи. Якщо не почати боротися з водоростями вчасно, весь зоопланктон та риби у водоймі можуть загинути. Натомість розмножаться бактерії, вивести які буде надзвичайно важко. На щастя, зусиллями співробітників Київського зоологічного парку спільно з Державним комітететом рибного господарства України катастрофу у водоймах зоопарку було попереджено за допомогою звичайного негашеного вапна. Воно виявилося дуже ефективним у таких випадках. Процес очищення водойм відбувається таким чином: спочатку акваторію та її береги чистять від надлишку рослинності та органічних відходів, потім доливають свіжої води, а насамкінець додають розведене негашене вапно, що нейтралізує кислу реакцію ґрунту та води.»

Значна частина біомаси мешканців моря припадає на частку безхребетних. Серед них чимало отруйних видів, які належать різним таксонам: губки, кишковопорожнинні, черви, молюски, голкошкірі.


Тип Кишковопоррожнинні (Coelenterata), чи Жалкі (Cnidaria)

Характерною особливістю кишковопорожнинних є наявність жалких клітин (кнідобластів, чи нематоцитів), що виробляють ядовитий секрет і служать для захисту від ворогів. Всі кишковопорожнинні — хижаки. Їжею їм служать різноманітні організми, починаючи від дрібних планктонних рачків і закінчуючи рибами.

 Найотруйніша з медуз і, ймовірно, найсмертоносніша із всіх відомих мешканців морів і океанів, є "морська оса", названа за свою токсичність "жахом австралійських пляжів".

 

Медуза "морська оса"

Ця медуза розміром з салатницю може мати до 60 щупалець по 4 метри кожний. Кожне щупальце має 5000 отруйних осередків та достатню кількість токсину, щоб убити 60 чоловік.

Отруйні медузи зустрічаються в теплих водах тропіків і субтропіків. Причиною збільшення їх чисельності вчені вважають глобальне потепління світового океану і діяльність підприємств, які економлять на очисних спорудах, скидаючи в океан «їжу» для медуз.

 Медуза корнерот ризостома — Rhizostoma pulmo, належить до Класу Сцифоїдні медузи — Scyphozoa, зустрічається в Чорному і Азовському морях. Вона викликає опіки. В нематоцистах ризосоми міститься токсичний пептид — ризостомін, який спричинює у тварин дихальний параліч і смерть.

Медуза-корнерот Rhizostoma pulmo

До числа найбільш великих сцифомедуз відноситься Ціанея — Cyanea capillata. Цей вид можна зустріти в Баренцевому і Білому морях. Контакт зі щупальцями ціанеї вже через делька секунд призводить до виникнення пекучого болю, до якого через 10—20 хвилин добавляються симптоми ураження шкіри — еритема, інколи набряк, що може тривати від 40 хвилин до 48 годин.

Медуза ціанея Cyanea capillata

У тварин, що загинули при введенні смертельної дози екстракту нематоцист, на розтині відмічені застійні явища у внутрішніх органах і серці. Токсична фракція, виділена з нематоцист, представляє собою суміш білків з Мr~70 000. Введення токсинів мишам викликає затруднення при диханні, судоми і смерть, яка при введенні дози 0,7 мг/кг наступає через 30 хвилин, а при дозі 0,3 мг/кг — через 24 год. Яд вражає провідну систему сердечного мязу.

До класу Коралові поліпи — Anthozoa належить звичайна актинія — Actinia equina Linne. Жалкі клітини актиній пошкоджують шкіру людини, викликають сверблячку і опіки в місці контакту. У важких випадках може розвинутися лихоманка, головна біль, слабість.

Звичайна актинія Actinia equina

Постійне робота з актиніями, наприклад, при наукових дослідженнях, може викликати алергічні реакції. Токсичність неочищенного екстракту зі щупалець становить (DL50) для мишей 13,8 мг/кг при введенні. Виділений з екстракту білок — еквінотоксин має Mr ~20 000. Еквінотоксин володіє гіпотензивною дією, викликає брадикардію і апное. Попереднє введення атропіну чи ваготомії послаблює першу парасимпатичну фазу дії еквінотоксину. Друга фаза його дії характеризується порушенням серцевої діяльності. Еквінотоксин спричинює гемоліз еритроцитів.

Найбільш складним за структурою і другим за активністю (токсичністю) небілковим токсином є палітоксин, вперше виділений Р.Муром і П.Шойєром(США) в1971р. з мяких коралів Palythoa toxica, знайдених на Гавайських островах.


  

мякі корали Palythoa toxica

Встановлення будови і стереохімії палітоксину, завершене в 1981р. об^єднаними групами Й.Хірата і Й.Кіші, виявилось визначною подією в біоорганічній хімії. Молекула палітоксину являє собою унікальну структуру, довгий ланцюг якої побудований з ди-, три- і тетрагідрокситетрагідропіранових і фуранових циклів, сполучених насиченими і ненасиченими зв^язками поліолів, на його N-кінці знаходиться первинна аміногрупа, а С-кінець ацильованим залишком -аміноакриламінопропанолу. Палітоксин володіє потужною дією: при внутрівенному введенні мишам його LD50 становить 0,15 мкг/кг, при внутрічеревному -0,4мкг/кг, а для мавп він ще токсичніший- LD50 0,078 мкг/кг. Летальний кінець наступає через 5-30хв. в результаті звуження судин, аритмії, коронарних спазм і зупинки дихання. Цікаво, що в сублетальних дозах палітоксин проявляє високу протипухлинну активність. Механізм дії палітоксину не повністю зрозумілий, проте відомо, що він аналогічно уабаіну, але значно сильніше, зв^язується з Na+, K+ - АТФазами чутливих клітин(нервової тканини, серця, еритроцитів) і утворює в місцях зв^язування пори в цитоплазматичних мембранах, в результаті чого клітини втрачають іони K+ і Са2+ і гинуть.


Палітоксин

Теалия — Tealia felina Linne належить до класу Кораллові поліпи Anthozoa.

Неочищений екстракт зі щупалець має DL50 для мишей при в/в введені 124 мг/кг,а частково очищений — 69 мг/кг. Симптоми отруєння включають адинамію, гіпотермію, пилоерекцію, тремор і судоми.

Виділений з екстракту токсин — теаліатоксин — має Mr~7800, рI 9. Токсин володіє вираженим гістамінолітичною дією, а також гемолітичною активністю. Токсин спричинює брадикардію, бронхоспазм, утруднює дихання.

Тип Губки (Spongia, Porifera) — типові пасивно-ядовиті тварини, що використовують для захисту свої токсичні метаболіти. Токсичність губок забезпечило збереження цієї найбільш примітивної групи. В сучасній фауні нараховується близько 2500 видів губок. Губки — активні біофільтратори, деякі з них здатні пропускати через своє тіло десятки і сотні літрів води за добу. У людини при контакті з губкою може виникнути сильне свербіння і набряк пальців. В губках міститься широкий спектр біологічно активних сполук з антибіотичними, цитостатичними і токсичними властивостями. За своєю хімічною природою активні сполуки губок дуже різноманітні. Серед них є сесквітерпеноїди і гетероциклічніе сполуки, стерини, біогенні аміни і токсичні білки, в тому числі суберитин, виділений з пробкової губки Suberites domuncula. Пробкова губка цікава тим, що вона має співжителя рака-самітника, який ховає своє мяке черевце в спиральній порожнині всередині губки. Суберитин представляє собою гомогенний білок з Мr~28 000. Він володіє нейротоксичною активністю, яка залежить від наявності залишків триптофана в його молекулі. Суберитин гемолізирує еритроцити, здатний гідролізувати АТФ. На крабів суберитин спричиняє паралітичну дію. При введенні собакам і кролям викликає рвоту, розлад шлунково-кишечного тракту, порушення координації рухів і дихання. Смертельна доза для собак становить 10 мг/кг.

Губки використовують дуже ефективні методи хімічного захисту. Торкатися їх не рекомендується.

Особливо потрібно остерігатися контакту з яскравими губками — оранжевими, жовтими і червоними . Скелетні голки деяких губок здатні пробити навіть резину неопренових перчаток. Токсин, що виробляється губками викликає сильне подразнення шкіри і дерматити.

Тип Немертини — нижчі черви, що мешкають переважно в морях. Діючим ядом озброєних немертин Amphiporus, Paranemertes є анабазеїн, а також його похідні 2,3"-біпіридил і немертиллен.

  


Анабазеїн Немертиллен 2,3"-біпіридил

Токсини володіють нікотиноподібною дією і викликабть параліч у поліхет і ракоподібних. Зі слизового секрету неозброєних немертин Cerebratulus виділені дві групи токсичних поліпептидів: цитолітичні (група А) і нейротоксичні (група В). Так, наприклад, цитотоксин А-III має Мr~20 000, молекула стабілізована чотирма внутрішньомолекулярними дисульфідними звязками. А-III сильний гемолітик і в концентрації 1—10 мкг/мл викликає лізис еритроцитів. В сублетичних концентраціях А-III спричиняє деполяризуючу дію на збуджені нервові і мязові мембрани. В групу нейротоксинів входять поліпептиди B-I—B-IV с Мr~6000. Нейротоксини викликають паралізуючу дію на ракоподібних. Характерним фармакологічним ефектом нейротоксинів групи В є видовження фази реполяризації потенціалу дії в нейронах ракоподібних. Первинна структура нейротоксину B-IV із яда немертини Cerebratulus lacteus представлена нижче:

Тип кільчасті черви. Представник класу багатощетинкові — Polychaeta,Гліцера (Glycera convolute Keferstein)

Екстракт з ії залоз спричиняє зупинку серця дафній і володіє протеолітичною і коллагеназною активністю. З екстракту виділений нейротоксичний білок α-гліцеротоксин з Mr~300 000.

 До класу Polychaeta входить Люмбрінеріс ( Lumbrineris heteropoda Marenzeller). Він містить сильний інсектицид нереїстоксин, що пошкоджує нервову систему комах. Для хребетних тварин він відносно малотоксичний: DL50 для мишей при в/в введені 30 мг/кг, при п/к — 1000 мг/кг, всередину 118 мг/кг. Добавляння нереїстоксину у воду в експерименті може викликати загибель риби.

Люмбрінеріс

Синтетичний аналог нереїстоксину 1,3-біс (карбамолітіо)-2-NN-диметиламінопропангідрохлорид (інша назва «картап» або «падан») є сильним інсектицидом і застосовується в Японії для боротьби зі шкідниками рису, чаю та сільськогосподарських культур.

  

 нереїстоксин падан

Тип Молюски (Mollusca)

Головоногі (клас Cephalopoda) — найбільш високоорганізовані молюски. Всі головоногі — хижаки. Представником цього класу є восьминіг Дофлейна (Octopus dofleini), який досягає в довжину 3 м, мешкає в Японському морі. Як правило, в місці укусу відчувається гостра біль, развивається місцеве запалення.

В яді восьминогів Octopus dofleini і О. vulgaris, каракатиці Sepia officinalis виявлено біогенні аміни (тирамін, дофамін, норадреналін, гістамін) і токсичні білки (цефалотоксин). Токсин не має холінестеразнї і амінопептидазної дії, проте володіє паралітичним ефектом на ракоподібних. Цефалотоксин, виділений із задніх слюнних залоз восьминога О. dofleini, маєМr~23 000, представляє собою глікопротеїн, що містить залишки 18 амінокислот (74% білка), а також вуглеводи, в том числі 5,8% гексозаміна.

Токсин Gonyaulax catenella, чи G.tamarensis, названий сакситоксином, вперше виділений з аляскінського молюска Saxidomus giganteus Е.Шанцем в 1957р.

 

Аляскінського молюск Saxidomus giganteus

Структура його остаточно встановлена рентгеноструктурним аналізом в 1975р. незалежно групами Е.Шанца і Г.Рапопорта(США). Пізніше сакситоксин був виявленим також у прісноводних синьо-зелених водоростях Aphanizomenon flos-aquae, а його аналоги — неосакситоксин, сульфовані похідні гонітоксини ,  та інш. — в ряді морських мікроводоростях, що головним чином зустрічаються у Північній Атлантиці, північній частині Тихого океану і на берегах Японії. Сакситоксин представляє собою дигуанідинове похідне з жорстким трициклічним скелетом, уретановою функцією і гідратованою 12-карбонільною групою в піролідиновому кільці і нагадує тетродотоксин.

   R1 R1 R2

Сакситоксин Н Н         Тетродотоксин

Неосакситоксин ОН Н

Гоніатоксин І Н OSO

Гоніатоксин ІІ OH OSO

За біологічною дією він повністю йому аналогічний, будучи блокатором натрієвих каналів електрозбуджуючих мембран нервових і м^язових клітин.

Одними з найтоксичніших морських молюсків є Gambierdiscus toxicus.

Він продукує одразу два сильних токсини: ліпофільний сігуатоксин, який є причиною багатьох харчових отруєнь у тропічних регіонах з часів епохи Великих географічних відкриттів, і є найсильнішим із відомих небілкових токсинів-майтотоксин; будову поки що не встановлено.

Тип голкошкірі (Echinodermata) — морські тварини, дуже чутливі до солоності води.

Отруйними в тій чи іншій мірі представниками цього типу є морські їжаки (клас Echinoidea), морські зірки(клас Asteroidea) і голотурії (клас Holothuroidea).

   

Серед біологічноактивних речовин голкошкірих найбільш вивчені сапоніни морських зірок і голотурій, що володіють широким спектром фізіологічної активності.

Астеросапоніни А і В, що містяться в морській зірці Asterias amurensis, при гідролізі дають стероїдні аглікони - астерогеніни I і II, сірчану кислоту, а також цукор, набір яких специфічний для кожного з астеросапонінов. Так, астеросапонін А пов"язаний глікозидним зв"язком з D-хіновозою і D-фукозою (2:2), тоді як цукри астеросапоніна В представлені D-хіновозою, D-фукозою, D-ксилозою, D-галактозою у співвідношенні 2:1:1:1.


  

фукоза

хіновоза

галактоза

ксилоза

астеросапонін В

Астеросапоніни володіють гемолітичною і іхтіотоксичною дією. У концентрації (1,5-3,0) • 10-4 моль / л блокують нервово-м"язову передачу у хребетних: спочатку викликають швидке скорочення м"яза з наступним розслабленням, на тлі якого розвивається прогресуюче пригнічення передачі збудження на непряму стимуляцію. Ефект має беззворотній характер.

У голотурії Stichopus japonicus, Cucumaria japonica, C. fraundatrix містяться цитотоксичні тритерпенові глікозиди голотоксіни, стіхопозіди і кукумаріозіди. Голотоксіни і стіхопозіди з С. japonica мають ідентичні аглікони, названі стіхопогенінамі. Голотоксіни і стіхопозіди володіють фунгіцидною дією.

 голотоксин В

= D-ксилоза

= D-глюкоза

=3-о-метил- D-глюкоза

=D-хіновоза

Кукумаріозиди з С. japonica блокують біосинтез нуклеїнових кислот і білка в яйцях морського їжака, виконують фунгіцидну дію по відношенню до дріжджових грибків Saccharomyces. Цитотоксичну дію кукумаріозидів може бути обумовлено їх впливом на проникність мембран, зокрема транспорт кальцію. У низьких концентраціях (10-6 моль / л) кукумаріозид з С. japonica знижує активність мембрано-зв"язаного ферменту Са2-АТФ-ази без збільшення проникності мембран. При підвищенні концентрації (10-4моль /л) різко збільшується проникність ліпідної фази мембран. Токсичні сполуки морських їжаків мають білкову природу, проте конкретні відомості про токсини морських їжаків наших морів практично відсутні.


Висновок

Мікроскопічні токсичні водорості живуть практично у всіх водоймах. Зазвичай вони нечисленні для того, щоб їхня присутність якось вплинула на інші організми, однак підвищення температури води або потрапляння у воду пилу може провокувати бурхливе розмноження водоростей, що призводить до загибелі риби, молюсків і навіть людей. Багаті на азот опади, які потрапляють до океану в результаті таких катастроф(падіння астероїда, виверження вулканів, зміна клімату), стають також їжею для водоростей. Відбувається вибухове зростання їх чисельності, і різко зростає кількість різних токсинів, що виділяються ними - від подразників шкіри до нервових отрут. Рослини засвоюють токсини з ґрунтових вод, звідки вони потрапляють до організму травоїдних тварин. Крім того, бурхливе розмноження водоростей, а потім їх гниття "висмоктує" з водойм кисень, що також призводить до загибелі морської фауни. Вчені відзначають, що глобальне потепління і зростання температури води в океанах, що спостерігається зараз, також можуть привести до вибухового розмноження водоростей і до нового "всесвітнього отруєння".

Разом з тим варто нагадати, що розповсюдженість, потенціальна можливість утворюватися у різних середовищах довкілля в природних умовах у великих кількостях, висока токсичність, здатність забруднювати ряд об^єктів довкілля у значних концентраціях та невідворотність контакту людини з цими токсикантами з наступним проникненням в організм різними шляхами (пероральний, аерогенний, черезшкірний) обумовлюють високий ризик масових гострих та хронічних отруєнь.

Також не менш токсичні та небезпечні морські безхребетні. Вони налічують багато видів і, відповідно, ж містять багато різних токсинів, що становлять неабияку небезпеку для мешканців морів та людини.


Використана література

1.  Овчинников Ю.А. Биоорганическая химия.—М.:Просвещение, 1987. — 815с.

2.  Наталія ПОЗНЯК-ХОМЕНКО; Дзеркало Тижня № 1 (529) 15 - 21 січня 2005

3.  Стаття «Наука та інновації ― суспільству»

4.   www.bbc.co.uk

Информация о файле
Название файла Токсини водоростей та морських безхребетних от пользователя z3rg
Дата добавления 7.1.2012, 2:37
Дата обновления 7.1.2012, 2:37
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 145 килобайт (Примерное время скачивания)
Просмотров 839
Скачиваний 144
Оценить файл