ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ
Кафедра: «Техносферная и экологическая безопасность»
Курсовая работа
На тему:
Биоиндикация и биотестирование
Студента 5 курса
группы ИЗОС-815
Езопихина К.И.
_____________
Подпись студента
Преподаватель
Тинус А.М.
Оценка ____________
Подпись преподавателя ____________
Дата____________
Санкт-Петербург
2012
СОДЕРЖАНИЕ
АННОТАЦИЯ.. 3
ВВЕДЕНИЕ.. 4
1. БИОИНДИКАЦИЯ.. 5
1.1 Общие принципы использования биоиндикаторов. 5
1.2 Особенности использования растений в качестве биоиндикаторов. 8
1.3 Особенности использования животных в качестве биоиндикаторов. 9
1.4 Особенности использования микроорганизмов в качестве биоиндикаторов. 11
1.5 Симбиологические методы в биоиндикации. 12
1.6 Области применения биоиндикаторов. 13
1.6.1 Оценка качества воздуха. 13
1.6.2 Оценка качества воды.. 14
1.6.3 Диагностика почв. 15
2. БИОТЕСТИРОВАНИЕ.. 18
2.1 Задачи и приемы биотестирования качества среды.. 18
2.2 Суть методологии биотестирования. 19
2.3 Требования к методам биотестирования. 19
2.4 Основные подходы биотестирования. 20
2.4.1 Биохимический подход. 20
2.4.2 Генетический подход. 23
2.4.3 Морфологический подход. 27
2.4.4 Физиологический подход. 29
2.4.5 Иммунологический подход. 30
2.5 Практическое применение методологии биотестирования. 32
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ... 34
АННОТАЦИЯ
Данная работа посвящена биоиндикации и биотестированию. А именно, рассмотрены общие принципы использования биоиндикаторов, особенности использования растений, животных, микроорганизмов в их качестве и область их применения. Приведены суть, требования, основные подходы биеотестирования, его задачи, приемы и практическое применение.
ВВЕДЕНИЕ
Контроль качества окружающей среды с использованием биологических объектов в последние десятилетия оформился как актуальное научно-прикладное направление.
Биоиндикация (bioindication) — обнаружение и определение экологически значимых природных и антропогенных нагрузок на основе реакций на них живых организмов непосредственно в среде их обитания. Биологические индикаторы обладают признаками, свойственными системе или процессу, на основании которых производится качественная или количественная оценка тенденций изменений, определение или оценочная классификация состояния экологических систем, процессов и явлений. В настоящее время можно считать общепринятым, что основным индикатором устойчивого развития в конечном итоге является качество среды обитания.
Биотестирование (bioassay) — процедура установления токсичности среды с помощью тест - объектов, сигнализирующих об опасности независимо от того, какие вещества и в каком сочетании вызывают изменения жизненно важных функций у тест - объектов. Для оценки параметров среды используются стандартизованные реакции живых организмов (отдельных органов, тканей, клеток или молекул). В организме, пребывающем контрольное время в условиях загрязнения, происходят изменения физиологических, биохимических, генетических, морфологических или иммунных систем. Объект извлекается из среды обитания, и в лабораторных условиях проводится необходимый анализ. Живой организм может тестироваться также в специальных камерах или на стендах, где создаются условия изучаемого загрязнения (что очень важно для выявления реакций организма на то или иное доминирующее загрязнение или целый комплекс известных загрязняющих веществ на данной территории обитания).
1. БИОИНДИКАЦИЯ
1.1 Общие принципы использования биоиндикаторов
Состояние биологической системы (организм, популяция, биоценоз) в той или иной степени характеризует воздействие на нее природных или антропогенных факторов и условий среды и может применяться для их оценки.
Биоиндикаторы (от био и лат. indico — указываю, определяю) — организмы, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды обитания. Их индикаторная значимость определяется экологической толерантностью биологической системы. В пределах зоны толерантности организм способен поддерживать свой гомеостаз. Любой фактор, если он выходит за пределы «зоны комфорта» для данного организма, является стрессовым. В этом случае организм реагирует ответной реакцией различной интенсивности и длительности, проявление которой зависит от вида и является показателем его индикаторной ценности. Именно ответную реакцию определяют методы биоиндикации. Биологическая система реагирует на воздействие среды в целом, а не только на отдельные факторы, причем амплитуда колебаний физиологической толерантности модифицируется внутренним состоянием системы — условиями питания, возрастом, генетически контролируемой устойчивостью.
Многолетний опыт ученых разных стран по контролю состояния окружающей среды показал преимущества, которыми обладают живые индикаторы:
· в условиях хронических антропогенных нагрузок могут реагировать даже на относительно слабые воздействия вследствие кумулятивного эффекта; реакции проявляются при накоплении некоторых критических значений суммарных дозовых нагрузок;
· суммируют влияние всех без исключения биологически важных воздействий и отражают состояние окружающей среды в целом, включая ее загрязнение и другие антропогенные изменения;
· исключают необходимость регистрации химических и физических параметров, характеризующих состояние окружающей среды;
· фиксируют скорость происходящих изменений;
· вскрывают тенденции развития природной среды;
· указывают пути и места скоплений в экологических системах различного рода загрязнений и ядов, возможные пути их попадания в пищу человека;
· позволяют судить о степени вредности любых синтезируемых человеком веществ для живой природы и для него самого, причем дают возможность контролировать их действие.
Выделяют две формы отклика живых организмов, используемых в целях биоиндикации, — специфическую и неспецифическую. В первом случае происходящие изменения связаны с действием одного какого-либо фактора. При неспецифической биоиндикации различные антропогенные факторы вызывают одинаковые реакции.
В зависимости от типа ответной реакции биоиндикаторы подразделяют на чувствительные и кумулятивные. Чувствительные биоиндикаторы реагируют на стресс значительным отклонением от жизненных норм, а кумулятивные накапливают антропогенное воздействие, значительно превышающее нормальный уровень в природе, без видимых изменений.
В качестве биоиндикаторов могут быть использованы представители всех «царств» живой природы. Для биоиндикации не пригодны организмы, поврежденные болезнями, вредителями и паразитами. Идеальный биологический индикатор должен удовлетворять ряду требований:
· быть типичным для данных условий;
· иметь высокую численность в исследуемом экотопе;
· обитать в данном месте в течение ряда лет, что дает возможность проследить динамику загрязнения;
· находиться в условиях, удобных для отбора проб;
· давать возможность проводить прямые анализы без предварительного концентрирования проб;
· характеризоваться положительной корреляцией между концентрацией загрязняющих веществ в организме-индикаторе и объекте исследования;
· использоваться в естественных условиях его существования;
· иметь короткий период онтогенеза, чтобы была возможность отслеживания влияния фактора на последующие поколения.
Ответная реакция биоиндикатора на определенное физическое или химическое воздействие должна быть четко выражена, т.е. специфична, легко регистрироваться визуально или с помощью приборов.
При выборе индикатора необходимо принимать во внимание соображения экономии и учитывать характер использования тех или иных организмов. Например, широко распространенные на исследуемой территории, и не занесенные в «Красную книгу».
На уровне популяции биоиндикация проводится в том случае, если процесс распространения негативных изменений охватывает такое количество особей, при котором заметно сокращается численность популяции, изменяется ее половозрастная структура, сокращается продолжительность жизни, происходит сдвиг фенологических фаз и др.
Экосистемный подход к оценке среды дает возможность ранней диагностики ее изменений. Сигналом тревоги служит разбалансировка продукционно - деструкционных процессов. Диагностическими признаками таких сдвигов являются, например, накопление органического вещества, заиление, зарастание водоемов, усиленное развитие микроорганизмов.
В качестве объектов для биоиндикации применяются разнообразные организмы — бактерии, водоросли, высшие растения, беспозвоночные животные, млекопитающие. Для гарантированного выявления присутствия в природных средах токсического агента неизвестного химического состава, как правило, используется набор объектов, представляющих различные группы сообщества. С введением каждого дополнительного объекта эффективность схемы испытаний повышается, однако нет смысла бесконечно расширять ассортимент обязательных объектов для использования в такой оценке.
Для биоиндикации необходимо выбирать наиболее чувствительные сообщества, характеризующиеся максимальными скоростью отклика и выраженностью параметров. Например, в водных экосистемах наиболее чувствительными являются планктонные сообщества, которые быстро реагируют на изменение среды благодаря короткому жизненному циклу и высокой скорости воспроизводства. Бентосные сообщества, где организмы имеют достаточно длинный жизненный цикл, более консервативны: перестройки происходят в них при длительном хроническом загрязнении, приводящем к необратимости процессов.
К методам биоиндикации, которые можно применять при исследовании экосистемы, относится выявление в изучаемой зоне редких и исчезающих видов. Список таких организмов, по сути, является набором индикаторных видов, наиболее чувствительных к антропогенному воздействию.
1.2 Особенности использования растений в качестве биоиндикаторов
С помощью растений можно проводить биоиндикацию всех природных сред. Индикаторные растения используются при оценке механического и кислотного состава почв, их плодородия, увлажнения и засоления, степени минерализации грунтовых вод и степени загрязнения атмосферного воздуха газообразными соединениями, а также при выявлении трофических свойств водоемов и степени их загрязнения поллютантами. Например, на содержание в почве свинца указывают виды овсяницы (Festuca ovina и др.), полевицы (Agrostis tenuis и др.); цинка — виды фиалки (Viola tricolor и др.), ярутки (Tlaspi alpestre и др.); меди и кобальта — смолевки (Silene vulgaris и др.), многие злаки и мхи.
Чувствительные фитоиндикаторы указывают на присутствие загрязняющего вещества в воздухе или почве ранними морфологическими реакциями — изменением окраски листьев (появление хлорозов; желтая, бурая или бронзовая окраска), различной формы некрозами, преждевременным увяданием и опаданием листвы. У многолетних растений загрязняющие вещества вызывают изменение размеров, формы, количества органов, направления роста побегов или изменение плодовитости. Подобные реакции обычно неспецифичны.
Некоторые естественные факторы могут вызывать симптомы, сходные с антропогенными нарушениями. Так, например, хлороз листьев может быть вызван недостатком железа в почве или ранним заморозком. Поэтому при определении морфологических изменений у растений необходимо учитывать возможность действия других повреждающих факторов.
Индикаторы другого типа представляют собой растения-аккумуляторы. Они накапливают в своих тканях загрязняющее вещество или вредные продукты метаболизма, образуемые под действием загрязняющих веществ, без видимых изменений. При превышении порога токсичности ядовитого вещества для данного вида проявляются различные ответные реакции, выражающиеся в изменении скорости роста и длительности фенологических фаз, биометрических показателей и, в конечном счете, снижении продуктивности.
Получить точные количественные данные о динамике и величине стрессовых воздействий на основе морфологических изменений невозможно, но можно довольно точно определить величину потерь продукции и, имея график зависимости «доза — эффект», рассчитать величину стрессового воздействия.
Б. В. Виноградов классифицировал индикаторные признаки растений как флористические, физиологические, морфологические и фитоценотические. Флористическими признаками являются различия состава растительности изучаемых участков, сформировавшиеся вследствие определенных экологических условий. Индикаторное значение имеет как присутствие, так и отсутствие вида. К физиологическим признакам относятся особенности обмена веществ растений, к анатомо-морфологическим признакам — особенности внутреннего и внешнего строения, различного рода аномалии развития и новообразования, к фитоценотическим признакам — особенности структуры растительного покрова: обилием рассеянность видов растений, ярусность, мозаичность, степень сомкнутости.
Очень часто в целях биоиндикации используются различные аномалии роста и развития растения — отклонения от общих закономерностей. Ученые систематизировали их в три основные группы, связанные: (1) с торможением или стимулированием нормального роста (карликовость и гигантизм); (2) с деформациями стеблей, листьев, корней, плодов, цветков и соцветий; (3) с возникновением новообразований (к этой группе аномалий роста относятся также опухоли).
Гигантизм и карликовость многие исследователи считают уродствами. Например, избыток в почве меди вдвое уменьшает размеры калифорнийского мака, а избыток свинца приводит к карликовости смолевки.
В целях биоиндикации представляют интерес следующие деформации "растений:
· фасциация — лентовидное уплощение и сращение стеблей, корней и цветоносов;
· махровость цветков, в которых тычинки превращаются в лепестки;
· пролификация — прорастание цветков и соцветий;
· асцидия — воронковидные, чашевидные и трубчатые листья у растений с пластинчатыми листьями;
· редукция — обратное развитие органов растений, вырождение;
· нитевидность — нитчатая форма листовой пластинки;
· филлодий тычинок — превращение их в плоское листовидное образование.
Биомониторинг может осуществляться путем наблюдений за отдельными растениями-индикаторами, популяцией определенного вида и состоянием фитоценоза в целом. На уровне вида обычно производят специфическую индикацию какого-то одного загрязнителя, а на уровне популяции или фитоценоза — общего состояния природной среды.
1.3 Особенности использования животных в качестве биоиндикаторов
Позвоночные животные также служат хорошими индикаторами состояния среды благодаря следующим особенностям:
· являясь консументами, они находятся на разных трофических уровнях экосистем и аккумулируют через пищевые цепи загрязняющие вещества;
· обладают активным обменом веществ, что способствует быстрому проявлению воздействия негативных факторов среды на организм
· имеют хорошо дифференцированные ткани и органы, которые обладают разной способностью к накоплению токсических веществ и неоднозначностью физиологического отклика, что позволяет исследователю иметь широкий набор тестов на уровне тканей, органов и функций;
· сложные приспособления животных к условиям среды и четкие поведенческие реакции наиболее чувствительны к антропогенным изменениям, что дает возможность непосредственно наблюдать и анализировать быстрые отклики на оказываемое воздействие;
· животных с коротким циклом развития и многочисленным потомством можно использовать для проведения ряда длительных наблюдений и прослеживать воздействие фактора на последующие поколения; для долгоживущих животных можно выбрать особо чувствительные тесты в соответствии с особо уязвимыми этапами онтогенеза.
Основное преимущество использования позвоночных животных в качестве биоиндикаторов заключается в их физиологической близости к человеку. Основные недостатки связаны со сложностью их обнаружения в природе, поимки, определения вида, а также с длительностью морфо - анатомических наблюдений. Кроме того, эксперименты с животными зачастую дороги, требуют многократной повторяемости для получения статистически достоверных выводов.
Оценка и прогнозирование состояния природной среды с привлечением позвоночных животных проводятся на всех уровнях их организации. На организменном уровне с помощью сравнительного анализа оцениваются морфо - анатомические, поведенческие и физиолого-биохимические показатели.
Морфо - анатомические показатели описывают особенности внешнего и внутреннего строений животных и их изменение под воздействием определенных факторов (депигментация, изменение покровов, структуры тканей и расположения органов, возникновение уродств, опухолей и других патологических проявлений).
Поведенческие и физиолого - биохимические параметры особенно чувствительны к изменению внешней среды. Токсиканты, проникая в кости или кровь позвоночных животных, сразу же воздействуют на функции, обеспечивающие жизнедеятельность. Даже при узкоспецифичном влиянии токсиканта на определенную функцию ее сдвиги отражаются на состоянии всего организма вследствие взаимосвязанности процессов жизнедеятельности. Достаточно отчетливо присутствие токсикантов проявляется в нарушении ритма дыхания, сердечных сокращений, скорости пищеварения, ритмике выделений, продолжительности циклов размножения.
Для того чтобы иметь возможность сравнивать материал, собранный разными исследователями в различных районах, набор видов-индикаторов должен быть един и невелик. Вот некоторые критерии пригодности различных видов млекопитающих для биоиндикационных исследований:
· принадлежность к разным звеньям трофической цепи — растительноядным, насекомоядным, хищным млекопитающим;
· оседлость или отсутствие больших миграций;
· широкий ареал распространения (сравнительно высокая эв-ритопность), т.е. этот критерий исключает использование в качестве тест-индикаторов эндемиков;
· принадлежность к естественным сообществам: критерий исключает синантропные виды, питающиеся вблизи жилища человека и неадекватно характеризующие микроэлементный состав загрязнения данного региона;
· численность вида должна обеспечивать достаточный материал для анализа;
· простота и доступность методов добывания видов.
Анализируя по данным критериям представителей всех отрядов млекопитающих, встречающихся на территории стран СНГ, можно остановиться на семи видах: обыкновенная бурозубка (Sores areneus), европейский крот (Talpa europaea), алтайский крот (Talpa altaica), бурый медведь (Ursus arctos), лось (Alces alces), рыжая полевка (Clethrionomysglareolus), красная полевка (Clethrionomys rubilus).
1.4 Особенности использования микроорганизмов в качестве биоиндикаторов
Микроорганизмы — наиболее быстро реагирующие на изменение окружающей среды биоиндикаторы. Их развитие и активность находятся в прямой связи с составом органических и неорганических веществ в среде, так как микроорганизмы способны разрушать соединения естественного и антропогенного происхождений. На этом основаны принципы биоиндикации с использованием микроорганизмов. Необходимо иметь сведения о составе, количестве и функциональной активности последних.
При прямом микроскопировании, например воды, количество обнаруживаемых микроорганизмов оказывается небольшим, поэтому для изучения морфологического разнообразия и оценок их общего числа в единице объема проводят концентрирование пробы. Для фильтрации воды используют фильтры Зейтца или иной конструкции с размером пор 0,35; 0,5; 0,23; 0,3; 0,4 мкм. Объем фильтруемой воды может быть от 10 до 20 мл в зависимости от типа водоема. Для подсчета численности микроорганизмов фильтр прокрашивают, переносят на предметное стекло в каплю иммер сионного масла и микроскопируют с перемещением сетчатого микрометра.
Выявление микроорганизмов и их учет можно произвести путем высева проб в жидкие и агаризованные питательные среды. Для учета сапрофитов используют мясопептонный агар, олиго-трофных бактерий выращивают на агаризованной воде из исследуемого водоема.
Чаще всего для оценки качества вод используют показатель микробного числа — это число клеток аэробных сапрофитных организмов в I мл воды. В чистых водоемах число сапрофитов может исчисляться десятками и сотнями, а в загрязненных и грязных водоемах этот показатель достигает сотен тысяч и миллионов.
Помимо микробного числа используются данные по видовому составу микроорганизмов. В полисапробной зоне наблюдается массовое развитие нитчатых бактерий. В загрязненной фекалиями воде высок коли-индекс, характеризующий наличие в среде энтеро-бактерий Escherichia coli — условных патогенов и постоянных обитателей кишечника человека и животного.
1.5 Симбиологические методы в биоиндикации
Симбиоз широко распространен в природе, а симбиотические ассоциации часто играют ключевую роль в поддержании нормального функционирования наземных, пресноводных и морских экосистем. Симбиоз грибов и азотфиксирующих бактерий с высшими растениями и водорослей с грибами обеспечил процветание этих ассоциаций в наземной среде. Лишайники, симбиотическая ассоциация водорослей и грибов, очень чувствительны к качеству среды и уже давно используются как традиционные биомаркеры состояния атмосферного воздуха (см. гл. 4). Мадрепоровые кораллы (скле-рактинии) — симбиоз одноклеточных водорослей зооксантелл с кишечнополостными животными, определяющий важную ландшафтообразующую роль этой ассоциации в тропических морях. Все более значительной признается роль симбиотических микроорганизмов в трофике практически всех видов организмов. Прямо или косвенно регулируя численность своих хозяев, симбионты оказывают существенное влияние на их динамику численности и структуру популяции. Биоразнообразие симбионтов (паразитов, комменсалов, мутуалистов), как правило, значительно превышает разнообразие их хозяев. Так, на Большом Барьерном рифе (коралловая постройка) водится около 2 000 видов рыб, а их парази-тофауна представлена более чем 20000 видов; три вида австралийских промысловых креветок в качестве симбионтов имеют 38 видов организмов из разных систематических групп.
Помимо уточнения оценки биоразнообразия по числу видов учет симбионтов позволяет получать достоверную информацию о качестве среды, так как степень интенсивности инвазии (относительное количество хозяев, имеющих симбионтов) и экстенсивность инвазии (среднее количество симбионтов на хозяине) напрямую зависят от условий, в которых находится популяция хозяев. Многие симбионты чувствительны к изменениям внешней среды, в частности симбионты водных организмов — к загрязнению и опреснению, а симбионты наземных организмов — к радионуклидам. При оценке разнообразия фауны симбионтов широко используют статистические методы. Учет симбиотических, в том числе и паразитических, организмов, а также исследование состояния симбиотических ассоциаций позволяют более точно оценить биоразнообразие и характер динамических процессов в экосистемах и могут быть рекомендованы в качестве важных элементов экодиагностических исследований.
1.6 Области применения биоиндикаторов
1.6.1 Оценка качества воздуха
Как известно, воздух представляет собой смесь определенных газов, повсюду на Земле представленных приблизительно в равных объемных долях. Загрязнение воздуха имеет место в том случае, если в смеси имеются вещества в таких количествах и так долго, что создают опасность для человека, животных, растений или имущества. От загрязнения воздуха страдают все живые организмы, но особенно растения. По этой причине растения, в том числе низшие, наиболее пригодны для обнаружения начального изменения состава воздуха. Соответствующие индексы дают количественное представление о токсичном эффекте загрязняющих воздух веществ.
Лишайники являются симбиотическими организмами. Многими исследователями показана их пригодность для целей биоиндикации. Они обладают весьма специфическими свойствами, так как реагируют на изменение состава атмосферы, обладают отличной от других организмов биохимией, широко распространены по разным типам субстратов, начиная со скал и кончая корой и листьями деревьев, удобны для экспозиции в загрязненных районах.
Выделяют четыре основные экологические группы лишайников: эпифитные — растущие на коре деревьев и кустарников; эпи-ксилъные — растущие на обнаженной древесине; эпигейные — на почве; эпилитные — на камнях. Из них наиболее чувствительны к загрязнению воздуха эпифитные виды. С помощью лишайников можно получать вполне достоверные данные об уровне загрязнения воздуха. При этом можно выделить группу химических соединений и элементов, к действию которых лишайники обладают сверхповышенной чувствительностью: оксиды серы и азота, фторо- и хлороводород, а также тяжелые металлы. Многие лишайники погибают при невысоких уровнях загрязнения атмосферы этими веществами. Процедура определения качества воздуха с помощью лишайников носит название лихеноиндикации.
Оценку чистоты воздуха можно проводить с помощью высших растений. Например, голосеменные — отличные индикаторы чистоты атмосферы. Возможно также изучение мутаций в волосках тычиночных нитей традесканции. Французские ученые подметили, что при увеличении в воздухе окиси углерода и окислов азота, выбрасываемых двигателями внутреннего сгорания, окраска ее тычиночных нитей меняется от синей к розовой. Последствия нарушений в индивидуальном развитии растений могут быть выявлены также по частоте встречаемости морфологических отклонений (фенодевиантов), величине показателей флуктуирующей асимметрии (отклонение от совершенной билатеральной и радиальной симметрии), методом анализа сложноорганизованных комплексных структур (фрактал-анализ). Уровни любых отклонений от нормы оказываются минимальными лишь при оптимальных условиях и возрастают при любых стрессирующих воздействиях.
1.6.2 Оценка качества воды
Прежде всего надо помнить, что биологическое исследование изучает не воду, а водоем в целом как единую экосистему. Н. С. Строганов определил водную токсикологию как науку о токсичности среды обитания гидробионтов на всех уровнях организации живого, которая изучает все реакции гидробионтов на загрязнение любого происхождения.
Для того чтобы оценить уровень токсического загрязнения водного объекта промышленными или иными стоками, нужно ответить на вопросы: токсична ли исходная вода, поступающая в водоем со сточными водами; какова степень ее токсичности; на каком расстоянии от источника загрязнения токсичность снижается до минимального значения. В качестве эквивалента было использовано разведение сточной жидкости, при котором еще наблюдается повреждающий эффект по примененному биотесту. Ориентируясь как на основной показатель токсичности химических веществ для гидробионтов на величину медиальной летальной концентрации , принятую в общей (медицинской) токсикологии для теплокровных животных, Н.С.Строганов предложил количественное определение токсичности как величины, обратной медиальной летальной концентрации, устанавливаемой в 48-часовом опыте.
Для биологической индикации качества вод могут быть использованы практически все группы организмов, населяющие водоемы: планктонные и бентосные беспозвоночные, простейшие, водоросли, макрофиты, бактерии и рыбы. Каждая из них, выступая в роли биологического индикатора, имеет свои преимущества и недостатки, которые определяют границы ее использования при решении задач биоиндикации, так как все эти группы играют ведущую роль в общем круговороте веществ в водоеме. Организмы, которые обычно используют в качестве биоиндикаторов, ответственны за самоочищение водоема, участвуют в создании первичной продукции, осуществляют трансформацию веществ и энергии в водных экосистемах. Всякое заключение по результатам биологического исследования строится на основании совокупности всех полученных данных, а не на основании единичных находок индикаторных организмов. Как при выполнении исследова ния, так и при оценке полученных результатов необходимо иметь в виду возможность случайных, местных загрязнений в точке наблюдения. Например, разлагающиеся растительные остатки, труп лягушки или рыбы могут_вызывать местные изменения в характере населения водоема.
1.6.3 Диагностика почв
В основе принципа биологической диагностики почв лежит представление о том, что почва как среда обитания составляет единую систему с населяющими ее популяциями разных организмов.
Лучше других разработаны ботанические методы фитоиндикации и диагностики почв. Например, путем анализа состава и структуры растительных сообществ, распространения растений-индикаторов или определенных индикационных признаков у отдельных видов растений можно установить тип почвы, степень ее гидроморфизма, развитие процессов заболачивания, соленакопления и т.д. Среди растений обнаружены индикаторы на тот или иной механический и химический состав почв, степень обогащения питательными элементами, на кислотность или щелочность, глубину протаивания мерзлотных почв или уровень грунтовых вод.
Теоретической предпосылкой применения почвенно-зоологического метода для целей диагностики почв является сформулированное М.С.Гиляровым в 1949 г. представление об «экологическом стандарте» вида — потребности вида в определенном комплексе условий среды. Каждый вид в пределах своего ареала встречается только в тех местообитаниях, которые обеспечивают полный комплекс необходимых для проявления жизнедеятельности условий. Амплитуда варьирования отдельных факторов среды характеризует экологическую пластичность вида. Эврибионты мало пригодны для индикационных целей, тогда как стенобионты служат хорошими индикаторами определенных условий среды и свойств субстрата. Это положение представляет собой общий теоретический принцип в биологической диагностике. Однако использование для индикации одного вида не дает полной уверенности в правильности выводов (здесь имеет место «правило смены местообитаний» и как следствие смена экологических характеристик вида). Лучше исследовать весь комплекс организмов, из которых одни могут быть индикаторами на влажность, другие — на температуру, третьи — на химический или механический состав. Чем больше общих видов почвенных животных встречается на сравниваемых участках, тем с большей долей вероятности можно судить о сходстве их режимов, а следовательно, о единстве почвообразовательного процесса. Менее других полезны микроскопические формы — простейшие и микроартроподы (клещи, ного-хвостки). Их представители отличаются космополитизмом в силу того, что почва для них не выступает как единая среда обитания: они живут в системе пор, капилляров, полостей, которые можно найти в любой почве. Из микроартропод наиболее хорошо изучены индикаторные свойства панцирных клещей. Состав их комплексов сообществ зависит не только от почвенных условий, но и от характера и флористического состава растительности, поэтому данный объект перспективно использовать для индикации повреждающих воздействий на почву.
Особенно ценны и удобны для индикационных работ сообщества крупных беспозвоночных (дождевые черви, многоножки, личинки насекомых). Так, стафилиниды рода Bledius и чернотелки рода Belopus показательны для солончаково-солонцовых почв, многоножки-кивсяки, некоторые мокрецы и легочные моллюски служат индикаторами содержания в почве извести. Дождевые черви Octolasium lacteum и некоторые виды проволочников являются показателями высокого содержания кальция в грунтовых водах.
Интерес представляет почвенно-альгологическая диагностика, в основе которой лежит положение о том, что зональности почв и растительности соответствует зональность водорослевых группировок. Она проявляется в общем видовом составе и комплексе доминантных видов водорослей, наличии специфических видов, характере распространения по почвенному профилю, преобладании определенных жизненных форм.
Микробиологическая и биохимическая характеристика почв — наиболее сложные разделы почвенной биодиагностики. Микроорганизмы — очень чуткие индикаторы, резко реагирующие на различные изменения в среде. Отсюда необычайная динамичность микробиологических показателей. Почва характеризуется не только составом и численностью разных групп биоты, но и их суммарной активностью, а также активностью биохимических процессов, обусловленных наличием определенного пула ферментов, выделенных в результате жизнедеятельности растений, животных и микроорганизмов, а также аккумулированных почвой после разрушения клеток. Показателями биологической активности почв, применяемых в биоиндикации, могут служить количественные характеристики численности и биомассы разных групп почвенной биоты, их общая продуктивность, некоторые энергетические данные, активность основных процессов, связанных с круговоротом элементов, ферментативная активность почв, а также количество и скорость накопления некоторых продуктов жизнедеятельности почвообитающих организмов.
Наиболее общими являются методы, позволяющие оценить суммарные биологические процессы по исходным или конечным продуктам: методы определения дыхания почвы по поглощению 02 или выделению С02; учет активности азотфиксации по восстановлению ацетилена; микрокалориметрические измерения для установления уровня термостойкости; аппликационные методы с применением специальных материалов (целлюлозы, хроматогра-фической бумаги, целлофана) для оценки скорости и степени их разложения и накопления продуктов метаболизма, например аминокислот.
2. БИОТЕСТИРОВАНИЕ
Биотестирование (bioassay) — процедура установления токсичности среды с помощью тест - объектов, сигнализирующих об опасности независимо от того, какие вещества и в каком сочетании вызывают изменения жизненно важных функций у тест - объектов. Для оценки параметров среды используются стандартизованные реакции живых организмов (отдельных органов, тканей, клеток или молекул). В организме, пребывающем контрольное время в условиях загрязнения, происходят изменения физиологических, биохимических, генетических, морфологических или иммунных систем. Объект извлекается из среды обитания, и в лабораторных условиях проводится необходимый анализ. Живой организм может тестироваться также в специальных камерах или на стендах, где создаются условия изучаемого загрязнения (что очень важно для выявления реакций организма на то или иное доминирующее загрязнение или целый комплекс известных загрязняющих веществ на данной территории обитания).
2.1 Задачи и приемы биотестирования качества среды
В выявлении антропогенного загрязнения среды наряду с химико-аналитическими методами находят применение приемы, основанные на оценке состояния отдельных особей, подвергающихся воздействию загрязненной среды, а также их органов, тканей и клеток. Их применение вызвано технической усложненностью и ограниченностью информации, которую могут предоставить химические методы. Кроме того, гидрохимические и химико-аналитические методы могут оказаться неэффективными из-за недостаточно высокой их чувствительности. Живые организмы способны воспринимать более низкие концентрации веществ, чем любой аналитический датчик, в связи с чем биота может быть подвержена токсическим воздействиям, не регистрируемым техническими средствами.
Как было показано, биоиндикация предусматривает выявление уже состоявшегося или накапливающегося загрязнения по индикаторным видам живых организмов и экологическим характеристикам сообществ организмов. Пристальное внимание в настоящее время уделяется приемам биотестирования, т.е. использования в контролируемых условиях биологических объектов в качестве средства выявления суммарной токсичности среды. Биотестирование представляет собой методический прием, основанный на оценке действия фактора среды, в том числе и токсического, на организм, его отдельную функцию или систему органов и тканей.
Кроме выбора биотеста существенную роль играет выбор тест реакции — того параметра организма, который измеряется при тестировании.
Наиболее информативны интегральные параметры, характеризующие общее состояние живой системы соответствующего уровня. Для отдельных организмов к интегральным параметрам обычно относят характеристики выживаемости, роста, плодовитости, тогда как физиологические, биохимические, гистологические и прочие параметры относят к частным. Для популяций интегральными параметрами являются численность и биомасса, а для экосистем — характеристики видового состава, активности продукции и деструкции органического вещества.
С увеличением интегральности тест - реакции повышается «экологический реализм» теста, но обычно снижаются его оперативность и чувствительность. Функциональные параметры оказываются более лабильными, чем структурные, а параметры клеточного и молекулярного уровней проигрывают в отношении экологической информативности, но выигрывают в отношении чувствительности, оперативности и воспроизводимости.
2.2 Суть методологии биотестирования
Предлагаемая система биомониторинга представляет собой комплекс различных подходов для оценки состояния разных организмов, находящихся под воздействием комплекса как естественных, так и антропогенных факторов. Фундаментальным показателем их состояния является эффективность физиологических процессов, обеспечивающих нормальное развитие организма. В оптимальных условиях организм реагирует на воздействие среды посредством сложной физиологической системы буферных гомеостатических механизмов. Эти механизмы поддерживают оптимальное протекание процессов развития. Под воздействием неблагоприятных условий механизмы поддержания гомеостаза могут быть нарушены, что приводит к состоянию стресса. Такие нарушения могут происходить до появления изменений обычно используемых параметров жизнеспособности. Таким образом, методология биотестирования, основанная на исследовании эффективности гомеостатических механизмов, позволяет уловить присутствие стрессирующего воздействия раньше, чем многие обычно используемые методы.
2.3 Требования к методам биотестирования
Для того чтобы быть пригодными для решения комплекса современных задач, методы биотестирования, используемые для оценки среды, должны соответствовать следующим требованиям: быть применимыми для оценки любых экологических изменений среды обитания живых организмов; характеризовать наиболее общие и важные параметры жизнедеятельности биоты; быть достаточно чувствительными для выявления даже начальных обратимых экологических изменений; быть адекватными для любого вида живых существ и любого типа воздействия; быть удобными не только для лабораторного моделирования, но также и для исследований в природе; быть достаточно простыми и не слишком дорогостоящими для широкого использования.
Одним из наиболее важных требований при оценке состояния среды является чувствительность применяемых методов. Потребность в таких методах особенно возрастает в настоящее время, когда в силу повышенного внимания к проблемам охраны природы и в связи с развитием природоохранных мероприятий становится необходимым оценивать не только и не столько существенные, как правило, уже необратимые изменения в среде, но первоначальные незначительные отклонения, когда еще возможно вернуть систему в прежнее нормальное состояние.
Другое важное требование — универсальность как в отношении физического, химического или биологического оцениваемого воздействия, так и типа экосистем и вида живых существ, по отношению к которым такая оценка проводится. Причем, это необходимо как в отношении отдельных агентов, так и кумулятивного воздействия любого их сочетания (включая весь комплекс как антропогенных, так и естественных факторов).
Система должна быть относительно простой и доступной, пригодной для широкого использования. В настоящее время существует ряд современных молекулярно-биологических тестов качества среды, но в силу высокой технологической сложности и стоимости их применение оказывается ограниченным. При этом возникает вопрос: нужно ли прибегать к таким сложным методам при решении общей задачи мониторинга состояния среды и нельзя ли получить сходную информацию более доступным способом.
2.4 Основные подходы биотестирования
2.4.1 Биохимический подход
Стрессовое воздействие среды можно оценивать по эффективности биохимических реакций, уровню ферментативной активности и накоплению определенных продуктов обмена. Изменения содержания в организме определенных биохимических соединений (например, терпеноидов), показателей базовых биохимических процессов (например, концентрации хлорофилла у фотосин-тезирующих растений) и структуры ДНК в результате биохимических реакций (например, при оксидантном стрессе) могут обеспечить необходимую информацию о реакции организма в ответ на стрессовое воздействие.
Измерение адаптационного стресса. Каждый физиологический процесс требует определенных затрат энергии, поэтому любое изменение физиологического состояния немедленно сказывается на энергетическом обмене. Биоэнергетические показатели живых систем позволяют выявлять последствия стрессового воздействия среды до наступления необратимых изменений в организме.
Количество энергии, необходимое организму в единицу времени для обеспечения всех физиологических процессов, характеризует интенсивность энергетического обмена. На реализацию одного и того же физиологического процесса в неблагоприятных условиях организму требуется больше энергии, чем в оптимальных, из-за необходимости компенсации неблагоприятных воздействий среды.
В процессе жизнедеятельности всех аэробных организмов в ходе нормальных реакций кислородного метаболизма образуются свободные радикалы (CP) супероксид и другие формы активного кислорода. В норме уровень CP регулируется системой антиоксидантной защиты клетки, так как эти радикалы и продукты их превращения представляют серьезную угрозу: подавляют активность ферментов, разрушают нуклеиновые кислоты, вызывают деградацию биополимеров, изменяют проницаемость мембран. Высокий уровень образования супероксидных радикалов токсичен и может вызвать гибель организма. Уровень их образования, слегка превышающий базовый, может стимулировать рост клеток и играет важную роль в процессе канцерогенеза. Одним из универсальных механизмов стресса является развитие окислительных СР-реакций. Под действием окислительного стресса может происходить повреждение ДНК. Один из механизмов такого повреждения включает прямое окисление нуклеиновых кислот, другой — переваривание ДНК. Образование супероксидных радикалов увеличивается при разных видах облучений, изменении парциального давления кислорода под влиянием ксенобиотиков и при других воздействиях.
Метаболические свободные радикалы — это обширная группа высокоактивных интермедиатов, играющих важную роль в окислительно-восстановительных биохимических реакциях. В клетках животных общепризнано участие CP-реакций при действии окислительных ферментов в системах цитохромов и других темопротеидов, НАД, фловопротеидов, убихинона, осуществляемых с помощью коферментов-переносчиков электронов. Свободнорадикальные состояния возникают также в процессах аутоокисления биологически важных соединений, в особенности липидов. В последнем случае чаще всего имеет место образование липидных гидроперекисей, распад которых также приводит к образованию активных радикалов. Особенно подвержены такому аутоокислению ненасыщенные жирные кислоты — компоненты липидов биологических мембран. Появление CP-состояний в липидах клеточной мембраны приводит к модификации ее физико-химического состояния и активности мембранно-связанных ферментов. При повреждающих воздействиях на клетки процессы перекисного окисления липидов развиваются тем более активно, чем выше степень повреждения клетки. При этом перекисные радикалы могут взаимодействовать с молекулами белков или нуклеиновых кислот, связанными с мембраной, изменяя биологические свойства этих молекул и клетки в целом.
Стрессовая реакция биотестов может быть измерена по изменению в них уровня свободных радикалов по сравнению с контролем. Известно, что быстрые изменения интенсивности СР-ре-акций в живых объектах типичны для начальных стадий разных патологических состояний, в том числе для первичных процессов лучевого поражения. В значительной мере это зависит от развития перекисного окисления липидов мембран и определяет неспецифический окислительный стресс клетки. При этом нарушается го-меостатическое равновесие, клетки выходят в неустойчивое состояние, повышается их реактивность.
Исследование ферментативной активности почвенного микроценоза. Различные виды антропогенного воздействия на почву могут изменять условия существования почвенных микроорганизмов, нарушать нормальное протекание в почвах процессов микробной трансформации и, следовательно, отражаются на процессах трансформации веществ в биосфере. Почвенные микроорганизмы участвуют в циклах жизненно-важных элементов, таких как N, Р, S, Fe, Мп и др. Им принадлежит уникальная роль в очистке биосферы от загрязнений, так как именно микроорганизмы обладают высокой способностью к адаптации и могут быстро трансформировать загрязняющие вещества, как естественные для биосферы, так и чужеродные.
Изучение сукцессии и особенностей функционирования микробных комплексов в техногенных экосистемах представляет большой научный и практический интерес. Такие экосистемы могут служить моделью для исследования скорости и направления микробиологических и биохимических процессов.
Методы энзимологии широко применяются при решении экологических задач. Они позволяют оценить биохимическую активность почвенного микроценоза. Ферменты, выделяемые микроорганизмами в результате их жизнедеятельности, способны иммобилизоваться и накапливаться в почве в активном состоянии и в соответствующих условиях проявлять специфические биокаталитические функции.
К настоящему времени разработаны методы определения активности большого количества ферментов, участвующих в разнообразных почвенных биохимических процессах.
По типу катализируемых реакций все известные ферменты разделены на шесть классов: оксидоредуктазы, катализирующие окислительно-восстановительные реакции; гидролазы, катализирующие реакции гидролитического расщепления внутримолекулярных связей в различных соединениях; трансферазы, катализирующие реакции межмолекулярного или внутримолекулярного переноса химической группы и остатков с одновременным переносом энергии, заключенной в химических связях; лигазы (синтетазы), катализирующие реакции соединения двух молекул, сопряженные с расщеплением пирофосфатных связей АТФ или другого аналогичного трифосфата; лиазы, катализирующие реакции негидролитического отщепления или присоединения различных химических групп органических соединений по двойным связям; изоме-разы, катализирующие реакции превращения органических соединений в их изомеры.
В почве широко распространены и довольно подробно изучены оксидоредуктазы и гидролазы, имеющие очень большое значение в почвенной биодинамике. В гл. 4 приводятся методики определения биологической активности четырех ферментных систем почвенных микроценозов, используемых в практике биологического мониторинга.
2.4.2 Генетический подход
Наличие и степень проявления генетических изменений характеризует мутагенную активность среды, а возможность сохранения генетических изменений в популяциях отражает эффективность функционирования иммунной системы организмов.
В норме большинство генетических нарушений распознаются и элиминируются клеткой, например путем апоптоза за счет внутриклеточных систем или посредством иммунной системы. Достоверное превышение спонтанного уровня таких нарушений является индикатором стресса. Генетические изменения могут выявляться на генном, хромосомном и геномном уровнях. Принято выделять следующие типы мутаций. Генные, или точковые, — их делят на две группы: замены оснований в ДНК и вставки или выпадения нуклеотидов, приводящие к сдвигу рамки считывания генетического кода. Генные мутации делят также на прямые и обратные (реверсии). Мутации типа сдвига рамки считывания значительно менее склонны к спонтанным реверсиям, чем мутации типа замен оснований. Хромосомные перестройки (аберрации) заключаются в различных нарушениях структуры хромосом. Геномные мутации — изменение количества хромосом в ядре.
Относительно просты, хорошо воспроизводимы и высокочувствительны генетические тесты, основанные на оценке изменения хромосом в соматических клетках (изменения кариотипа, хромосомные аберрации, сестринские хроматидные обмены, микроядра и др.).
Для выявления канцерогенов и мутагенов применяются краткосрочные генетические тесты.
Уже давно известно, что некоторые химические вещества способны вызывать рак у человека. Относительно недавно пришло и постоянно ширится понимание того, что химические вещества способны вызывать мутации в половых клетках человека, которые повышают частоту генетических или наследственных заболеваний. Многие тысячи химических веществ, включая фармакологические препараты, бытовые химические вещества и пищевые добавки, пестициды и нефтепродукты, уже присутствуют в окружающей среде, и каждый год в нее поступают все новые и новые химические соединения. Помимо этого существуют и природные химические вещества, относительно которых известно, что они обладают мутагенной и/или канцерогенной активностью (например, микотоксины, содержащиеся в пищевых продуктах). Поэтому важно, чтобы химические вещества, воздействию которых люди подвергаются преднамеренно (например, во время терапевтических процедур), в повседневной жизни (это, в частности, относится к бытовым химическим веществам, косметическим средствам и т. п.), по недосмотру или небрежности (как в случае с пестицидами), испытывались на способность вызывать рак и генетические нарушения (мутации).
Относительно немногие химические вещества идентифицированы в качестве канцерогенов благодаря установленной связи этих веществ с возникновением рака у человека. Однако канцерогенная активность обычно определяется на основании способности какого-либо вещества вызывать опухоль у лабораторных животных в результате воздействия на протяжении жизни. Исследования такого рода могут длиться в течение двух или трех лет и требуют дефицитных реактивов и высококвалифицированных специалистов. Это обстоятельство привело к поиску альтернативных путей выявления химических веществ, обладающих канцерогенными свойствами, в результате чего был разработан ряд сравнительно недорогих тестов, во многих из которых вместо цельного организма млекопитающих используются другие биологические системы. Поскольку на проведение тестов уходит значительно меньше времени, чем на классические долгосрочные исследования на грызунах, их стали называть краткосрочными тестами.
Известно, что генетические дефекты являются причиной значительной доли заболеваний у человека, однако до сих пор не ясно, в какой мере присутствующие в окружающей среде химические вещества обусловливают генетические болезни. Это неудивительно, поскольку вероятность такой опасности для здоровья определяется на протяжении жизни по меньшей мере одного поколения.
Информация, определяющая признаки клетки или организма, содержится в генетическом материале клетки, состоящем из де-зоксирибонуклеиновой кислоты (ДНК). ДНК состоит из субъединиц — нуклеотидов, которые в свою очередь состоят из пятиугле-родного сахара (2-дезоксирибозы), остатка фосфорной кислоты и пуринового или пиримидинового азотистого основания. Эти субъединицы образуют в пространстве спиралевидную двунитчатую структуру. Каждая из двух нитей представляет собой последовательность молекул дезоксирибозы, связанных в цепь молекулами фосфорной кислоты. Обе нити связаны друг с другом водородными связями, располагающимися между комплементарными парами пуриновых и пиримидиновых оснований. Комплементарными парами оснований являются гуанин (пурин), который связан с цитозином (пиримидином), и аденин (пурин), связанный с ти-мином (пиримидином). Уникальная последовательность оснований, объединенных в тройки, или триплеты, образует генетический код: каждый триплет кодирует определенную аминокислоту. Последовательность триплетов и обеспечивает уникальность информации, необходимой для синтеза функционального белка или фермента. Такую функциональную последовательность оснований называют геномом. Генетическая информация передается от одного поколения клеток к другому путем точного удвоения нитей и равного разделения ДНК перед клеточным делением (митозом в соматических клетках или мейозом в половых), благодаря чему обеспечивается надежное наследование всех признаков каждым последующим поколением. Данный фундаментальный генетический процесс является общим для всех организмов — от простой клетки до сложного организма млекопитающего или растения. У эукариотических организмов длинные нити ДНК связаны с белками (гистонами) и организованы в отдельные сложные структуры, называемые хромосомами, которые располагаются в клеточном ядре.
Изменения информации, содержащейся в ДНК, возникают в результате изменений в структуре молекулы ДНК, отчего последовательность оснований, передающаяся следующему поколению, оказывается нарушенной; это в свою очередь может приводить к появлению потомков, отличающихся по своим признакам от родителей. Такие изменения называются мутациями, и, хотя многие мутации вредны, некоторые из них совместимы с нормальным, здоровым состоянием и обусловливают лишь мелкие различия между особями одного вида. Мутации такого вида являются движущей силой эволюции.
Мутагенные химические вещества взаимодействуют с ДНК, вызывая изменения в ее структуре. Эти процессы могут приводить к потере, увеличению или замене оснований, изменяя тем самым их расположение в ДНК и влияя на точность передаваемой генетической информации.
Почти все краткосрочные методы, позволяющие получить результаты в течение максимум нескольких недель, основаны на демонстрации хромосомных повреждений, генных мутаций или повреждения ДНК, при этом многие из них являются тестами in vitro (т. е. проводятся на экспериментальных биологических системах без использования целостных живых организмов). В этих тестах применяется очень широкий спектр организмов — от бактерий и дрожжей до насекомых, растений и культивируемых клеток млекопитающих. Существуют также краткосрочные тесты, в которых лабораторные животные подвергаются воздействию изучаемого химического вещества на протяжении периодов от нескольких часов до недель.
Хотя в литературе описано более сотни тест-систем для исследования генотоксичности, охватывающих различные организации живого — от бактериофага до млекопитающих, регулярно применяются менее 20 из них, а некоторые доступны лишь в специализированных лабораториях.
Чаще всего для выявления мутагенных химических веществ применяются тесты с использованием бактерий; эта группа тестов в целом и наиболее апробирована. В отличие от эукариотических организмов, у которых ДНК организована в сложные хромосомные структуры, у бактерий присутствует лишь одна кольцевая молекула ДНК, которая легкодоступна для химических веществ, проникающих сквозь клеточную стенку. Бактериальные тесты имеют также то преимущество, что в одном опыте может быть получена популяция, состоящая из многих миллионов клеток с относительно коротким периодом размножения. В классическом варианте используются штаммы бактерии, уже имеющие мутации по определенным генам. Мутации, индуцированные тестируемым веществом, так называемые обратные мутации, выявляются в результате роста таких «ревертантных» бактерий с образованием колоний в соответствующей селективной среде. Бактериальные тесты могут быть использованы для выявления мутагенных метаболитов в биологических жидкостях (например, в моче, цельной крови, плазме) животных или людей, подвергшихся воздействию химических факторов.
На основе штаммов сальмонеллы были созданы полуколичественные и количественные тесты для оценки мутагенной активности. Количественные тесты целесообразно использовать в целях определения частоты мутаций, а также в тех случаях, когда исследуемые вещества являются высокотоксичными и вызывают гибель большей части клеток тест-объекта. Поэтому наиболее широкое распространение получил ставший классическим полуколичественный тест Эймса с метаболической активацией in vitro (или, как его иногда еще называют, тест Эймса сальмонелла/микросомы).
Непрямым доказательством повреждения ДНК в клетках млекопитающих может служить проявление репарационной активности ДНК. Репарация ДНК может быть выявлена с помощью простого теста на культивируемых клетках млекопитающих, основанного на измерении «репарационного», или «внепланового», синтеза ДНК. В его основе лежит следующее явление: тимидин включается в ДНК в процессе как нормального, так и репарационного синтеза. Клетки, подвергшиеся воздействию предполагаемого химического мутагена, обрабатывают тимидином, меченным радиоактивным изотопом (тритием), на такой стадии клеточного цикла, когда нормального синтеза ДНК не происходит или он подавлен. Количество меченого тимидина, обнаруженного в ДНК, является показателем репарационного синтеза и, следовательно, отражает степень первичного повреждения ДНК.
Химические вещества можно оценить в отношении их способности индуцировать хромосомные повреждения у растений, насекомых и млекопитающих. Для млекопитающих обычной тест-системой является культура клеток, можно использовать какую-либо перевиваемую клеточную линию или культуру лимфоцитов человека. Для изучения повреждения хромосом in vivo хорошо разработан метод анализа метафазных хромосом в клетках костного мозга крыс, мышей или хомячков. Кроме того, хромосомные фрагменты в некоторых клетках костного мозга и других тканей можно идентифицировать в виде микроядер: так называемый микроядерный тест зарекомендовал себя как сравнительно простой метод выявления химических веществ, способных индуцировать хромосомные повреждения.
2.4.3 Морфологический подход
В условиях техногенного воздействия на природные экосистемы снижение численности популяций происходит в значительной мере за счет эмбриональной и личиночной смертности. Эмбрионы и личинки — наиболее чувствительные к повреждающим факторам фазы жизненного цикла гидробионтов. Воздействие на организм стрессирующих факторов приводит к отклонениям от нормального строения различных морфологических признаков. В московских и подмосковных водоемах за последние 20 лет катастрофически возрос процент уродливых личинок лягушек и жаб. Отмечено появление рыб с нарушениями эмбрионального морфогенеза, т. е. с различными аномалиями (асимметрия тела и т.д.). В пригородных водоемах и малых реках, по данным гидробиологического мониторинга, исчезли многие виды гидробионтов. Процессы воспроизведения организмов — это сложная цепь взаимообусловленных событий, любое из звеньев которой может быть нарушено воздействием токсичной среды.
Для диагностики воздействия загрязнений на морфологические характеристики применяются методы оценки флуктуирующей асимметрии.
Симметрия как вид согласованности отдельных частей живых организмов имеет общебиологическое значение. При работе с биологическими объектами в настоящее время используется классификация асимметрий (нарушения симметрии) по Л. Ван Валену (Van Valen, 1962), согласно которой они подразделяются на три типа:
1) направленная асимметрия, когда какая-то структура развита на одной стороне больше, чем на другой (сердце млекопитающих);
2) антиасимметрия — большее развитие структуры на одной из сторон (правша и левша в популяции человека);
3) флуктуирующая асимметрия — незначительные ненаправленные отклонения от строгой билатеральной симметрии.
Флуктуирующая асимметрия является результатом неспособности организмов развиваться по точно определенному плану. Различия между сторонами не являются генетически детерминированными и не имеют адаптивного значения. Выступая в качестве меры стабильности развития, флуктуирующая асимметрия характеризует состояние морфогенетического гомеостаза — способности организма к формированию генетически детерминированного фенотипа при минимальном уровне онтогенетических нарушений. Таким образом, флуктуирующая асимметрия может быть охарактеризована как одно из наиболее обычных и доступных для анализа проявлений случайной изменчивости развития.
Возможность использования асимметрии в биоиндикации показана многими авторами, которые убедительно доказали на примере различных видов растений и животных, что величина асимметрии реагирует на различные стрессоры антропогенного характера и может являться мерой нарушения развития организма. Флуктуирующая асимметрия — это один из общих онтогенетических показателей, характеризующий стабильность индивидуального развития, дающий оценку состояния природных популяций и зависящий от состояния среды. Величина флуктуирующей асимметрии и ее зависимость от определенных факторов может быть определена лишь на популяционном уровне. Кроме того, В. М.Захаровым показано, что флуктуирующая асимметрия является практически единственной формой фенотипической изменчивости с известной причиной обусловленности.
2.4.4 Физиологический подход
Одна из наиболее важных характеристик, высокочувствительная к стрессовому воздействию среды, — энергетика физиологических процессов. Наиболее экономичный энергетический обмен имеет место лишь при строго определенных условиях среды, которые могут быть охарактеризованы как оптимальные. Интенсивность энергетического обмена аэробного организма может быть определена посредством измерения скорости потребления кислорода. При оптимальных условиях организм находится на самом низком энергетическом уровне, при любых негативных изменениях среды обитания потребность в кислороде будет увеличиваться.
Для характеристики энергетического обмена две величины являются фундаментальными: основной обмен и максимальный обмен. Основной обмен отражает минимальный уровень потребления энергии, необходимый для обеспечения нормального функционирования организма при отсутствии каких-либо внешних воздействий. Максимальный обмен соответствует предельному количеству энергии, которое организм способен выработать в случае необходимости. Разность между этими величинами представляет энергетический ресурс адаптации конкретного вида животных, поскольку основной и максимальный уровни обмена являются видоспецифическими величинами.
Другая базовая характеристика, перспективная для оценки стрессовых воздействий, — темп и ритмика ростовых процессов.
В качестве тест - функций применяются физиологические параметры пресноводных беспозвоночных гидробионтов разных уровней филогенеза.
Свойства внешней среды, и в частности гидросферы, проявляются в интенсивности воздействия на организм или популяцию отдельных факторов или их комбинаций. Вещества, поступающие в водоем антропогенным путем, могут оказывать регулирующее, трофическое, токсическое и информативное воздействие на гидробионты. При незначительных концентрациях в водоеме эти вещества можно выявить, оценивая физиологический статус гомеостатических показателей организма, которые могут изменяться при сдвигах в окружающей среде.
Наибольший интерес представляют типы поведения, относящиеся к эволюционно-универсальным реакциям, свойственным всем эукариотам, включая человека. К таким феноменам относятся спонтанная двигательная активность как врожденная форма поведения и память — приобретенная форма поведения.
В опытах на инфузориях показателями исходного функционального состояния служили объективно регистрируемые реакции: спонтанная двигательная активность, уровень спонтанных сокращений, уровень пищевой возбудимости, состояние ядерного аппарата. Была продемонстрирована применимость основных физиологических показателей, используемых в опытах на позвоночных животных, для определения функционального состояния организмов, лишенных нервной системы. Исследования поведенческих реакций в ответ на внешнее воздействие проводились на пресноводной гидре Hydra attenuate, имеющей примитивную нервную систему. Оценивались реакции привыкания к раздражителю, при этом критерием выработки привыкания служило сокращение щупалец гидры. В экспериментах на плоских червях планариях Polycelis nigra, Euplanaria gonocephala, Dugesia tigrina (примитивный мозг — зачатки цефализации) были изучены основные реакции гидробионтов на экологически значимые раздражители. В дальнейшем для оценки качества водной среды стал успешно применяться метод выработки условных рефлексов у планарий.
Целостное поведение животных рассматривается как лабильное взаимодействие врожденных и приобретенных элементарных реакций, необходимое для быстрой и эффективной адаптации к условиям среды. Изучение поведения сложно и требует тщательных наблюдений в природе, подкрепленных лабораторными экспериментами. Возникшие на заре эволюции закономерности поведения у простейших сохраняются и у более развитых животных.
Таким образом, поведение является эволюционно обусловленным показателем физиологического состояния животного. На основании изменений в поведенческих феноменах одного вида животных можно прогнозировать нарушения поведения и других видов. Выбор форм поведения для биотестирования определяется их чувствительностью к изменениям, происходящим в окружающей среде.
2.4.5 Иммунологический подход
В дополнение к цитогенетическому подходу, характеризующему эффективность иммунной системы организма в отношении элиминации клеток с генетическими нарушениями, возможны развернутая оценка изменений иммунореактивности животного, исследование параметров иммунитета, таких как состав крови и гемолимфы, определение наличия антител в жидкостях организма, концентрации белков плазмы, перивисцеральной жидкости и гемолимфы, оценка динамики клеточного состава.
Основная функция иммунной системы состоит в поддержании постоянства внутренней среды организма. Иммунная система одна из самых лабильных, поэтому любые серьезные изменения в среде обитания влияют на функциональную активность иммунокомпетентных клеток. Значительные по величине и продолжительности неблагоприятные воздействия приводят к перенапряжению, истощению и рассогласованию в функционировании отдельных звеньев иммунитета и, как следствие, к развитию иммунодефицита. Все иммунологические тесты по оценке иммунного статуса млекопитающих дают информацию о трех основных клеточных популяциях иммунной системы. К ним относятся:
1) Фагоцитирующие клетки, обеспечивающие захват и переваривание чужеродных или измененнных собственных клеточных структур;
2) Т - лимфоциты, регулирующие взаимодействие клеток внутри системы с помощью цитокинов; они осуществляют распознавание и уничтожение генетически чужеродных и измененных клеток организма, дают сигнал В-лимфоцитам к продукции антител;
3) В - лимфоциты, продуцирующие антитела иммуноглобулиновой природы, которые нейтрализуют действие чужеродных агентов и облегчают фагоцитоз.
Иммунологический подход при оценке состояния окружающей среды заключается в изучении изменений врожденного и приобретенного иммунитета у беспозвоночных и позвоночных животных.
Предлагается использовать параметры иммунитета животных как критерий состояния организмов, их популяций и сообществ экосистем в норме и при техногенном воздействии. Кроме того, разрабатываются технологии производства новых антимикробных и иммунотерапевтических препаратов на основе иммуномодули рующих веществ, выделенных из клеток и биологических жидкостей гидробионтов.
Широко изучаются реакции врожденного иммунитета рыб, иглокожих, ракообразных, моллюсков, насекомых, червей. Показано, что врожденный иммунитет низших позвоночных и беспозвоночных животных во многом подобен таковому у млекопитающих и представляет собой совокупность реакций неспецифической антимикробной защиты, которая действует практически без латентного периода, с высокой эффективностью и избирательностью распознавания «своего» и «чужого». Антимикробные белки фагоцитов, гемоцитов и жидких сред организмов являются физиологически активными веществами, участвующими в реализации и обеспечении взаимодействия защитных реакций при фагоцитозе, воспалении и стрессе. К фагоцитам позвоночных животных относят нейтрофилы, эозинофилы, моноциты и макрофаги; у беспозвоночных животных — это гемоциты и амёбоциты. Перечисленные клетки объединены в общий функциональный тип вследствие наличия у них ряда общих структурно-метаболических свойств и стереотипности поведения в фагоцитарном процессе. Биохимическая специализация фагоцитов заключается в присутствии у них развитого лизосомального (гранулярного) аппарата, где депонируются физиологически активные вещества антибиотического действия.
Ведущую роль в уничтожении микроорганизмов играет группа катионных белков, таких как миелопероксидаза, лактоферрин, эластаза, катепсин G, лизоцим, дефенсины. Катионные полипептиды, которые осуществляют первичную защиту от инфекций и ухудшения условий среды обитания, представлены в природе от простейших животных до человека. При ухудшении условий среды обитания или при атаке чужеродных агентов в целомической жидкости беспозвоночных и в сыворотке крови позвоночных животных происходит резкое нарастание фагоцитирующих клеток и, как следствие, антимикробных белков и катионных полипептидов, которые осуществляют нейтрализацию стресса или гибель внедрившихся чужеродных агентов. Изучение динамики реакций врожденного иммунитета у водных животных, например определение концентрации гемоцитов и лизоцима, обнаружение новых белков в сыворотке и целомической жидкости, определение наличия специфических антител и сравнение этих параметров с нормой позволяет сделать выводы об изменении условий среды обитания или появлении заболеваний у животных.
Исследование параметров иммунологического статуса водных животных (рыб, моллюсков, морских звезд) в зависимости от изменений условий среды обитания, развития заболеваний или антигенного воздействия показало увеличение количества макро-фагоподобных клеток, концентрации лизоцима и, как следствие, появление в жидкостях организмов новых цитотоксических белков и антимикробных пептидов.
Предложенная методология биотестирования пригодна для оценки любой наземной и водной экосистемы по тест - функциям растений и животных. Тестирование позволяет определять состояние живых организмов по комплексу морфологических, генетических, физиологических, биохимических, биофизических и иммунологических параметров. Используемый набор методов исследования и тестов охватывает разные стороны индивидуального развития организма, обеспечивая интегральную оценку состояния биоты и Качества среды в целом.
Методы биотестирования просты, относительно недороги, пригодны для широкого применения и дают возможность оценивать качества природной среды при всем многообразии экологических изменений.
2.5 Практическое применение методологии биотестирования
Среди возможностей применения подходов биотестирования следует отметить их пригодность в мониторинге районов с интенсивным развитием промышленности и сельского хозяйства. Кроме того, биотестирование позволяет провести беглое сканирование больших пространств в целях ранней диагностики экологических нарушений. В данном случае достаточно ограничиться наиболее простыми, но эффективными методами, основанными, например, на морфологических или физиологических показателях.
Обобщить результаты, полученные методами биотестирования, допустимо по всем методам в пределах каждого подхода; по всем подходам для каждого вида или группы видов живых организмов; для экосистемы в целом, что дает надежную суммарную оценку состояния среды и исключает ошибочное заключение, вполне возможное при использовании единичных показателей в отношении отдельных видов. Итоговое заключение должно содержать характеристику качества среды в исследуемом районе (оценку степени отклонения от нормы и фонового состояния; оконтурива-ние зоны ощутимых последствий воздействия) и оценку благоприятности среды для человека.
Комплексная оценка качества среды обитания помимо использования разных подходов и тест - объектов биотестирования подразумевает организацию наблюдений за всеми природными средами, в первую очередь за воздушной, водной и почвенной компонентами биосферы.
Организация наблюдений за загрязнением атмосферы. Такие наблюдения проводятся на стационарных, маршрутных и передвижных (подфакельных) постах. Стационарные и маршрутные посты служат для проведения систематических наблюдений, передвижные — для разовых наблюдений в зонах непосредственного влияния промышленных предприятий. Наблюдения под факелами дымовых труб предприятий проводятся с целью получения материалов по распределению вредных веществ от отдельных источников выбросов в зависимости от метеоусловий и для получения оценки их влияния на загрязнение атмосферы.
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1. Егорова Е. И. Биотестирование и биоиндикация окружающей среды: учеб. пособие по курсу «Биотестирование» / Е. И. Егорова, В. И. Белолипецкая. — Обнинск: ИАТЭ, 2000.
2. Актуальные проблемы водной токсикологии / под ред. проф. Б.А.Флё-рова. — Борок : Ин-т биологии внутренних вод РАН, 2004.
3. Звягинцев Д. Г. Биология почв / Д. Г. Звягинцев [и др.]. — М.: Изд-во МГУ, 2005.
4. Захаров В. М. Асимметрия морфологических структур животных как показатель незначительных изменений состояния среды // Проблемы экологического мониторинга и моделирования экосистем. — Л.: Гидрометео-издат, 2001. — Т.4.
5. Мелехова О. П. Экспресс-метод биотестирования качества воды по метаболическому критерию / О.П.Мелехова [и др.]. — М.: РГОТУПС, 2000.