IPB

Здравствуйте, гость ( Вход | Регистрация )

Поиск по файловому архиву
  Add File

> Статистические методы управления качеством

Информация о файле
Название файла Статистические методы управления качеством от пользователя z3rg
Дата добавления 6.2.2016, 20:44
Дата обновления 6.2.2016, 20:44
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 152,22 килобайт (Примерное время скачивания)
Просмотров 1722
Скачиваний 128
Оценить файл

Описание работы:


В чем заключаются особенности применения инструментов контроля качества на практике
Разновидности статистических методов контроля качества продукции
Загрузить Статистические методы управления качеством
Реклама от Google
Доступные действия

Введите защитный код для скачивания файла и нажмите "Скачать файл"

Защитный код
Введите защитный код

Текст работы:


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ

ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра маркетинга

РЕФЕРАТ

по дисциплине: Управление качеством

на тему: Статистические методы управления качеством

МИНСК 2016


СОДЕРЖАНИЕ

Введение........................................................................
..................................... 3

1. В чем заключаются особенности применения инструментов контроля качества на практике........................................................................
..................................... 4

2. Разновидности статистических методов контроля качества продукции..... 5

2.1. Контрольный листок..........................................................................
........ 5

2.2. Гистограмма.....................................................................
.......................... 7

2.3. Диаграмма разброса........................................................................
.......... 8

2.4. Диаграмма Парето..........................................................................
......... 11

2.5. Стратификация...................................................................
...................... 13

2.6. Диаграмма Исикавы.........................................................................
........ 14

2.7. Контрольные карты...........................................................................
...... 16

Выводы..........................................................................
.................................. 19

Список использованных источников.............................................................. 20


ВВЕДЕНИЕ

Существуют различные методы контроля качества продукции, среди которых особое место занимают статистические методы. Многие из современных методов математической статистики довольно сложны для восприятия, а тем более для широкого применения всеми участниками процесса управления качеством. Поэтому японские ученые отобрали из всего множества семь методов, которые наиболее применимы в процессах контроля качества. Заслуга японцев состоит в том, что они обеспечили простоту, наглядность, визуализацию этих методов, превратив их в инструменты контроля качества, которые можно понять и эффективно использовать без специальной математической подготовки. В то же время, при всей своей простоте эти методы позволяют сохранить связь со статистикой и дают возможность профессионалам при необходимости их совершенствовать. Итак, к семи основным методам или инструментам контроля качества относятся следующие статистические методы:

·                     контрольный листок

·                     гистограмма

·                     диаграмма разброса

·                     диаграмма Парето

·                     стратификация (расслоение)

·                     диаграмма Исикавы (причинно-следственная диаграмма)

·                     контрольная карта.

Перечисленные инструменты контроля качества можно рассматривать и как отдельные методы, и как систему методов, обеспечивающую комплексный контроль показателей качества. Они — наиболее важная составляющая комплексной системы контроля Всеобщего Управления Качеством.


1. В чем заключаются особенности применения инструментов контроля качества на практике

Внедрение семи инструментов контроля качества должно начинаться с обучения этим методам всех участников процесса. Например, успешному внедрению инструментов контроля качества в Японии способствовало обучение руководства и сотрудников компаний методикам контроля качества. Большую роль в обучении статистическим методам в Японии сыграли Кружки контроля качества, в которых прошли обучение рабочие и инженеры большинства японских компаний.

Говоря о семи простых статистических методах контроля качества, следует подчеркнуть, что основное их назначение — контроль протекающего процесса и предоставление участнику процесса фактов для корректировки и улучшения процесса. Знание и применение на практике семи инструментов контроля качества лежат в основе одного из важнейших требований TQM — постоянного самоконтроля.

Статистические методы контроля качества в настоящее время применяются не только в производстве, но и в планировании, проектировании маркетинге, материально-техническом снабжении и т.д. Последовательность применения семи методов может быть различной в зависимости от цели, которая поставлена перед системой. Точно так же применяемая система контроля качества не обязательно должна включать все семь методов. Их может быть меньше, а может быть и больше, так как существуют и другие статистические методы.

Однако можно с полной уверенностью сказать, что семь инструментов контроля качества являются необходимыми и достаточными статистическими методами, применение которых помогает решить 95 % всех проблем, возникающих на производстве.


2. Разновидности статистических методов

контроля качества продукции

2.1. Контрольный листок

Какая бы задача не стояла перед системой, объединяющей последовательность применения статистических методов, всегда начинают со сбора исходных данных, на базе которых затем применяют тот или иной инструмент. Контрольный листок (или лист) — это инструмент для сбора данных и автоматического их упорядочения для облегчения дальнейшего использования собранной информации.

Обычно контрольный листок представляет собой бумажный бланк, на котором заранее напечатаны контролируемые параметры, согласно которым можно заносить в листок данные с помощью пометок или простых символов. Он позволяет автоматически упорядочить данные без их последующего переписывания. Таким образом, контрольный листок — хорошее средство регистрации данных.

Число различных контрольных листков исчисляется сотнями, и в принципе для каждой конкретной цели может быть разработан свой листок. Но принцип их оформления остается неизменным. Например, график температуры больного — один из возможных типов контрольных листков. В качестве другого примера можно привести контрольный листок, применяемый для фиксирования отказавших деталей в телевизорах (рисунок 1).



Рисунок 1. — Пример контрольного листка

На основании собранных с помощью этих контрольных листков данных не представляет труда составить таблицу суммарных отказов (таблица 1):

Таблица 1 — суммарные отказы

По всем моделям

Число отказов

Процент от общего числа отказов

Интегральные схемы

8

6,8

Конденсаторы

77

65,2

Сопротивления

4

3,4

Трансформаторы

8

6,8

Переключатели

19

15,3

Трубки

3

2,5

Итого

119

100

При составлении контрольных листков следует обратить внимание на то, чтобы было указано, кто, на каком этапе процесса и в течение какого времен собирал данные, а также чтобы форма листка была простой и понятной без дополнительных пояснений. Важно и то, чтобы все данные добросовестно фиксировались, и собранная в контрольном листке информация могла быть использована для анализа процесса.

2.2. Гистограмма

Для наглядного представления тенденции изменения наблюдаемых значений применяют графическое изображение статистического материала. Наиболее распространенным графиком, к которому прибегают при анализе распределения случайной величины при проведении контроля качества, является гистограмма.

Гистограмма — это инструмент, позволяющий зрительно оценить закон распределения статистических данных.

Гистограмма распределения обычно строится для интервального изменения значения параметра. Для этого на интервалах, отложенных на оси абсцисс, строят прямоугольники (столбики), высоты которых пропорциональны частотам интервалов. По оси ординат откладывают абсолютные значения частот (см. рисунок). Аналогичную форму гистограммы можно получить, если по оси ординат отложить соответствующие значения относительных частот. При этом сумма площадей всех столбиков будет равна единице, что оказывается удобно. Гистограмма также очень удобна для визуальной оценки расположения статистических данных в пределах допуска. Чтобы оценить адекватность процесса требованиям потребителя, мы должны сравнить качество процесса с полем допуска, установленным пользователем. Если имеется допуск, то на гистограмму наносят верхнюю (SU) и нижнюю (SL) его границы в виде линий, перпендикулярных оси абсцисс, чтобы сравнить распределение параметра качества процесса с этими границами. Тогда можно увидеть, хорошо ли располагается гистограмма внутри этих границ.

Пример построения гистограммы.

На рисунке 2 в качестве примера приведена гистограмма значений коэффициентов усиления 120 проверенных усилителей. В ТУ на эти усилители указано номинальное значение коэффициента SN на этот тип усилителей, равное 10дБ. В ТУ также установлены допустимые значения коэффициента усиления: нижняя граница допуска SL = 7,75 дБ, а верхняя SU = 12,25 дБ. При этом ширина поля допуска Т равна разности значений верхней и нижней границ допуска Т = SU – SL.

Если расположить все значения коэффициентов усиления в ранжированный ряд, все они будут находиться в пределах поля допуска, что создаст иллюзию отсутствия проблем. При построении гистограммы сразу становится очевидным, что распределение коэффициентов усиления хотя и находится в пределах допуска, но явно сдвинуто в сторону нижней границы и у большинства усилителей значение этого параметра качества меньше номинала. Это, в свою очередь, дает дополнительную информацию для дальнейшего анализа проблем.

Рисунок  2 — Пример построения гистограммы

2.3. Диаграмма разброса

Диаграмма разброса — инструмент, позволяющий определить вид и тесноту связи между парами соответствующих переменных.

Эти две переменные могут относиться к:

·                     характеристике качества и влияющему на нее фактору

·                     двум различным характеристикам качества

·                     двум факторам, влияющим на одну характеристику качества

Для выявления связи между ними и служит диаграмма разброса, которую также называют полем корреляции.

Использование диаграммы разброса в процессе контроля качества не ограничивается только выявлением вида и тесноты связи между парами переменных. Диаграмма разброса используется также для выявления причинно-следственных связей показателей качества и влияющих факторов.

Как построить диаграмму разброса?

Построение диаграммы разброса выполняется в следующей последовательности:

Этап 1.

Соберите парные данные (х, у), между которыми вы хотите исследовать зависимость, и расположите их в таблицу. Желательно не менее 25—30 пар данных.

Этап 2.

Найдите максимальные и минимальные значения для х и y. Выберите шкалы на горизонтальной и вертикальной осях так, чтобы обе длины рабочих частей получились приблизительно одинаковыми, тогда диаграмму будет легче читать. Возьмите на каждой оси от 3 до 10 градаций и используйте для облегчения чтения круглые числа. Если одна переменная — фактор, а вторая — характеристика качества, то выберите для фактора горизонтальную ось х, а для характеристики качества — вертикальную ось у.

Этап 3.

На отдельном листе бумаги начертите график и нанесите на него данные. Если в разных наблюдениях получаются одинаковые значения, покажите эти точки, либо рисуя концентрические кружки, либо нанося вторую точку рядом с первой.

Этап 4.

Сделайте все необходимые обозначения. Убедитесь, что нижеперечисленные данные, отраженные на диаграмме, понятны любому человеку, а не только тому, кто делал диаграмму:

·                     название диаграммы

·                     интервал времени

·                     число пар данных

·                     названия и единицы измерения для каждой оси

·                     имя (и другие данные) человека, который делал эту диаграмму

Пример построения диаграммы разброса.

Требуется выяснить влияние термообработки интегральных схем при
Т = 120°С в течение времени t= 24 ч на уменьшение обратного тока
p-n-перехода (Iобр. ). Для эксперимента было взято 25 интегральных схем
(n = 25) и замерены значения Iобр, которые приведены в таблице 2.

Таблица 2 — значения Iобр по 25 интегральным схемам

Номер интегральной схемы

До термообработки, X

После термообработки, Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

68 71 65 78 75 85 86 84 74 65 78 92 60 75 73 69 73 73 83 70 68 79 78 78 73

61 67 63 70 74 76 82 70 68 60 68 88 57 71 70 68 73 69 76 73 70 69 71 71 69

1.                По таблице находят максимальные и минимальные значения х и у: максимальные значения х = 92, у = 88; минимальные значения х = 60, у = 57.

2.                На графике на оси абсцисс откладывают значения х, на оси ординат — значения у. При этом длину осей делают почти равной разности между их максимальными и минимальными значениями и наносят на оси деления шкалы. На вид график приближается к квадрату. Действительно, в рассматриваемом случае разность между максимальными и минимальными значениями равна 92—60 = 32 для х и 88- 57 = 31 для у, поэтому промежутки между делениями шкалы можно делать одинаковыми.

3.                На график наносятся данные в порядке измерений и точки диаграммы разброса.

4.                На графике указываются число данных, цель, наименование изделия, название процесса, исполнитель, дата составления графика и т.д. Желательно также, чтобы при регистрации данных во время измерений приводилась и сопровождающая информация, необходимая для дальнейших исследований и анализа: наименование объекта измерения, характеристики, способ выборки, дата, время измерения, температура, влажность, метод измерения, тип измерительного прибора, имя оператора, проводившего измерения (для данной выборки), и др.


Рисунок 3 — Диаграмма разброса

Диаграмма разброса (рисунок 3) позволяет наглядно показать характер изменения параметра качества во времени. Для этого проведем из начала координат биссектрису (рисунок 4). Если все точки лягут на биссектрису, то это означает, что значения данного параметра не изменились в процессе эксперимента. Следовательно, рассматриваемый фактор (или факторы) не влияет на параметр качества. Если основная масса точек лежит под биссектрисой, то это значит, что значения параметров качества за прошедшее время уменьшилось. Если же точки ложатся выше биссектрисы, то значения параметра за рассматриваемое время возросли. Проведя лучи из начала координат, соответствующие уменьшению увеличению параметра на 10, 20, 30, 50 %, можно путем подсчета точек между прямыми выяснить частоту значений параметра в интервалах 0…: %, 10…20 % и т.д.


Рисунок 4 — Пример анализа диаграммы разброса


2.4. Диаграмма Парето

В 1897 г. итальянский экономист В. Парето предложил формулу, показывающую, что общественные блага распределяются неравномерно. Эта же теория была проиллюстрирована на диаграмме американским экономистом М. Лоренцом. Оба ученых показали, что в большинстве случаев наибольшая доля доходов или благ (80%) принадлежит небольшому числу людей (20%). контроль качество графический статистический

Доктор Д. Джуран применил диаграмму М. Лоренца в сфере контроля качества для классификации проблем качества на немногочисленные, но существенно важные и многочисленные, но несущественные и назвал этот метод анализом Парето. Он указал, что в большинстве случаев подавляющее число дефектов и связанных с ними потерь возникают из-за относительно небольшого числа причин. При этом он иллюстрировал свои выводы с помощью диаграммы, которая получила название диаграммы Парето.

Диаграмма Парето — инструмент, позволяющий распределить усилия для разрешения возникающих проблем и выявить основные причины, с которых нужно начинать действовать.

В повседневной деятельности по контролю и управлению качеством постоянно возникают всевозможные проблемы, связанные, например, с появлением брака, неполадками оборудования, увеличением времени от выпуска партии изделий до ее сбыта, наличием на складе нереализованной продукции, поступлением рекламаций. Диаграмма Парето позволяет распределить усилия для разрешения возникающих проблем и установить основные факторы, с которых нужно начинать действовать с целью преодоления возникающих проблем.

Различают два вида диаграмм Парето:

1. Диаграмма Парето по результатам деятельности. Эта диаграмма предназначена для выявления главной проблемы и отражает следующие нежелательные результаты деятельности:

·                     качество: дефекты, поломки, ошибки, отказы, рекламации, ремонты, возвраты продукции

·                     себестоимость: объем потерь, затраты

·                     сроки поставок: нехватка запасов, ошибки в составлении счетов, срыв сроков поставок

·                     безопасность: несчастные случаи, трагические ошибки, аварии.

2. Диаграмма Парето по причинам. Эта диаграмма отражает причины проблем, возникающих в ходе производства, и используется для выявления главной из них:

·                     исполнитель работы: смена, бригада, возраст, опыт работы, квалификация, индивидуальные характеристики;

·                     оборудование: станки, агрегаты, инструменты, оснастка, организация использования, модели, штампы;

·                     сырье: изготовитель, вид сырья, завод-поставщик, партия;

·                     метод работы: условия производства, заказы-наряды, приемы работы, последовательность операций;

·                     измерения: точность (указаний, чтения, приборная), верность и повторяемость (умение дать одинаковое указание в последующих измерениях одного и того же значения), стабильность (повторяемость в течение длительного периода), совместная точность, т.е. вместе с приборной точностью и тарированием прибора, тип измерительного прибора (аналоговый или цифровой).

Как построить диаграмму Парето?

Построение диаграммы Парето состоит из следующих этапов.

Этап 1. Решите, какие проблемы надлежит исследовать и как собирать данные.

1. Какого типа проблемы вы хотите исследовать? Например, дефектные изделия, потери в деньгах, несчастные случаи.

2. Какие данные надо собрать и как их классифицировать? Например, по видам дефектов, по месту их появления, по процессам, по станкам, по рабочим, по технологическим причинам, по оборудованию, по методам измерения и применяемым измерительным средствам.

Примечание. Суммируйте остальные нечасто встречающиеся признаки под общим заголовком «прочие».

3. Установите метод и период сбора данных

Примечание. Если это рекомендуется, используйте специальный бланк.

Этап 2. Разработайте контрольный листок для регистрации данных с перечнем видов собираемой информации. В нем надо предусмотреть место для графической регистрации данных проверок.

Этап 3. Заполните листок регистрации данных и подсчитайте итоги.

Этап 4. Для построения диаграммы Парето разработайте бланк таблицы для проверок данных, предусмотрев в нем графы для итогов по каждому проверяемому признаку в отдельности, накопленной суммы числа дефектов, процентов к общему итогу и накопленных процентов.

Этап 5. Расположите данные, полученные по каждому проверяемому признаку, в порядке значимости и заполните таблицу.

Примечание. Группу «прочие» надо поместить в последнюю строку независимо от того, насколько большим получилось число, так как ее составляет совокупность признаков, числовой результат по каждому из которых меньше, чем самое маленькое значение, полученное для признака, выделенного в отдельную строку.

Этап 6. Начертите одну горизонтальную и две вертикальные оси.

1. Вертикальные оси. Нанесите на левую ось шкалу с интервалами от 0 до числа, соответствующего общему итогу. На правую ось наносится шкала с интервалами от 0 до 100%.

2. Горизонтальная ось. Разделите эту ось на интервалы в соответствии с числом контролируемых признаков.

Этап 7. Постройте столбиковую диаграмму

Этап 8. Начертите кривую Парето. Для этого на вертикалях, соответствующих правым концам каждого интервала на горизонтальной оси, нанесите точки накопленных сумм (результатов или процентов) и соедините их между собой отрезками прямых.

Этап 9. Нанесите на диаграмму все обозначения и надписи.

1. Надписи, касающиеся диаграммы (название, разметка числовых значений на осях, наименование контролируемого изделия, имя составителя диаграммы).

3. Надписи, касающиеся данных (период сбора информации, объект исследования и место его проведения, общее число объектов контроля).

Как с помощью диаграммы Парето можно проанализировать проблемы качества, возникающие на предприятии?

Кривая Парето получилась сравнительно плавной в результате большого числа классов (рисунок 5). При уменьшении числа классов она становится более ломаной.


Рисунок 5 — Пример диаграммы Парето

2.5. Стратификация

Одним из наиболее эффективных статистических методов, широко используемых в системе управления качеством, является метод стратификации или расслаивания. В соответствии с этим методом водят расслаивание статистических данных, т.е. группируют данные в зависимости от условий их получения и производят обработку каждой группы данных в отдельности. Данные, разделенные на группы в соответствии с их особенностями, называют слоями (стратами), а сам процесс разделения на слои (страты) — расслаиванием (стратификацией).

Метод расслаивания исследуемых статистических данных — это инструмент, позволяющий произвести селекцию данных, отражающую требуемую информацию о процессе.

Существуют различные методы расслаивания, применение которых зависит от конкретных задач. Например, данные, относящиеся к изделию, производимому в цехе на рабочем месте, могут в какой-то мере различаться в зависимости от исполнителя, используемого оборудования, методов проведения рабочих операций, температурных условий и т.д. Все эти отличия могут быть факторами расслаивания. В производственных процессах часто используется метод 5М, учитывающий факторы, зависящие от человека (man), машины (machine), материала (material), метода (method), измерения (measurement).

По каким критериям можно выполнять расслаивание?

Расслаивание может осуществляться по следующим критериям:

·                     расслаивание по исполнителям — по квалификации, полу, стажу работы и т.д.

·                     расслаивание по машинам и оборудованию — по новому и старому оборудованию, марке, конструкции, выпускающей фирме и т.д.

·                     расслаивание по материалу — по месту производства, фирме-производителю, партии, качеству сырья и т.д.

·                     расслаивание по способу производства — по температуре, технологическому приему, месту производства и т.д.

·                     расслаивание по измерению — по методу, измерения, типу измерительных средств или их точности и т.д.

Однако пользоваться этим методом не так просто. Иногда расслаивание по, казалось бы, очевидному параметру не дает ожидаемого результата. В этом случае нужно продолжить анализ данных по другим возможным параметрам в поисках решения возникшей проблемы.

2.6. Диаграмма Исикавы

Результат процесса зависит от многочисленных факторов, между которыми существуют отношения типа причина — следствие (результат). Диаграмма причин и следствий — средство, позволяющее выразить эти отношения в простой и доступной форме.

В 1953 г. профессор Токийского Университета Каору Исикава, обсуждая проблему качества на одном заводе, суммировал мнение инженеров в форме диаграммы причин и результатов. Когда диаграмму начали применять на практике, она оказалась весьма полезной и скоро стала широко использоваться во многих компаниях Японии, получив название диаграммы Исикавы. Она была включена в японский промышленный стандарт (JIS) на терминологию в области контроля качества и определяется в нем следующим образом: диаграмма причин и результатов — диаграмма, которая показывает отношение между показателем качества и воздействующими на него факторами.

Причинно-следственная диаграмма — инструмент, позволяющий выявить наиболее существенные факторы (причины), влияющие на конечный результат (следствие).

Если в результате процесса качество изделия оказалось неудовлетворительным, значит, в системе причин, т.е. в какой-то точке процесса, произошло отклонение от заданных условий. Если эта причина может быть обнаружена и устранена, то будут производиться изделия только высокого качества. Более того, если постоянно поддерживать заданные условия процесса, то можно обеспечить формирование высокого качества выпускаемых изделий.

Важно также, что полученный результат — показатели качества (точность размеров, степень чистоты, значение электрических величин и т.д.) — выражается конкретными данными. Используя эти данные, с помощью статистических методов осуществляют контроль процесса, т.е. проверяют систему причинных факторов. Таким образом, процесс контролируется по фактору качества.

Как собрать данные, необходимые для построения диаграммы Исикавы?

Информация о показателях качества для построения диаграммы собирается из всех доступных источников; используются журнал регистрации операций, журнал регистрации данных текущего контроля, сообщения рабочих производственного участка и т.д. При построении диаграммы выбираются наиболее важные с технической точки зрения факторы. Для этой цели широко используется экспертная оценка. Очень важно проследить корреляционную зависимость между причинными факторами (параметрами процесса) и показателями качества. В этом случае параметры легко поддаются корреляции. Для этого при анализе дефектов изделий их следует разделить на случайные и систематические, обратив особое внимание на возможность выявления и последующего устранения в первую очередь причины систематических дефектов.

Важно помнить, что показатели качества, являющиеся следствием процесса, обязательно испытывают разброс. Поиск факторов, оказывающих особенно большое влияние на разброс показателей качества изделия (т.е. на результат), называют исследованием причин.

В настоящее время причинно-следственная диаграмма, являясь одним из семи инструментов контроля качества, используется во всем мире применительно не только к показателям качества продукции, но и к другим областям диаграмм. Можно предложить процедуру ее построения, состоящую из следующих основных этапов.

Этап 1. Определите показатель качества, т.е. тот результат, который вы хотели бы достичь.

Этап 2. Напишите выбранный показатель качества в середине правого края чистого листа бумаги. Слева направо проведите прямую линию («хребет»), а записанный показатель заключите в прямоугольник. Далее напишите главные причины, которые влияют на показатель качества, заключите их в прямоугольники и соедините с «хребтом» стрелками в виде «больших костей хребта» (главных причин).

Этап 3. Напишите (вторичные) причины,, влияющие на главные причины («большие кости») и расположите их в виде «средних костей», примыкающих к «большим». Напишите причины третичного порядка, которые влияют на вторичные причины, и расположите их в виде «мелких костей», примыкающих к «средним».

Этап 4. Проранжируйте причины (факторы) по их значимости, используя для этого диаграмму Парето, и выделите особо важные, которые предположительно оказывают наибольшее влияние на показатель качества.

Этап 5. Нанесите на диаграмму всю необходимую информацию: ее название; наименование изделия, процесса или группы процессов; имена участников процесса; дату и т.д.

Пример диаграммы Исикавы (рисунок 6).

Данная диаграмма построена для выявления возможных причин неудовлетворенности потребителя.

Рисунок 6 — Диаграмма Исикавы

После того как вы завершили построение диаграммы, следующий шаг — распределение причин по степени их важности. Не обязательно все причины, включенные в диаграмму, будут оказывать сильное влияние на показатель качества. Обозначьте только те, которые, на ваш взгляд, оказывают наибольшее воздействие.

2.7. Контрольные карты

Все вышеописанные статистические методы дают возможность зафиксировать состояние процесса в определенный момент времени. В отличие от них метод контрольных карт позволяет отслеживать состояние процесса во времени и более того — воздействовать на процесс до того, как он выйдет из-под контроля.

Контрольные карты — инструмент, позволяющий отслеживать ход протекания процесса и воздействовать на него (с помощью соответствующей обратной связи), предупреждая его отклонения от предъявляемых к процессу требований.

Использование контрольных карт преследует следующие цели:

·                     держать под контролем значение определенной характеристики;

·                     проверять стабильность процессов;

·                     немедленно принимать корректировочные меры;

·                     проверять эффективность принятых мер.

Однако следует отметить, что перечисленные цели являются характерными для действующего процесса. В период же запуска процесса контрольные карты используют для проверки возможностей процесса, т.е. его возможностей стабильно выдерживать установленные допуски.

Как выглядит контрольная карта?

Типичный пример контрольной карты приведен на рисунке 7.

Рисунок 7 —  Контрольная карта.

При построении контрольных карт на оси ординат откладываются значения контролируемого параметра, а на оси абсцисс — время t взятия выборки (или ее номер).

Всякая контрольная карта состоит обычно из трех линий. Центральная линия представляет собой требуемое среднее значение характеристики контролируемого параметра качества. Так, в случае (х-R)-карты это будут номинальные (заданные) значения х и R, нанесенные соответствующие карты.

Две другие линии, одна из которых находится над центральной — верхний контрольный предел (Кв или UCL — Upper Control Level), а другая под ней — нижний контрольный предел ( К н или LCL — Lower Control Level), представляют собой максимально допустимые пределы изменения значений контролируемой характеристики (показателя качества), чтобы считать процесс удовлетворяющим предъявляемым к нему требованиям.

Если все точки соответствуют выборочным средним значениям контролируемого параметра и его изменчивости, полученные по результатам обследования выборок, оказываются внутри контрольных пределов, не проявляя каких бы то ни было тенденций, то процесс рассматривается как находящийся в контролируемом состоянии. Если же, напротив, они попадут за контрольные пределы или примут какую-нибудь необычную форму расположения, то процесс считается вышедшим из-под контроля.

Процесс считается контролируемым, если систематические составляющие его погрешности регулярно выявляются и устраняются, а остаются только случайные составляющие погрешностей, которые, как правило, распределяются в соответствии с нормальным (гауссовским) законом распределения.

Для успешного внедрения на практике контрольных карт важно не только овладеть техникой их составления и ведения, но, что значительно важнее, научиться правильно «читать» карту. Расположение контрольных точек на х -карте указывает на возрастание среднего выборочного значения во времени. А значение х в четвертой выборке оказалось за контрольным пределом, что говорит о том, что в момент, когда бралась четвертая выборка, процесс уже не соответствовал предъявляемым требованиям. Однако этого можно было бы избежать, если бы на основании результатов уже первых трех выборок, когда процесс находился еще в установленных пределах, но уже была видна тенденция его изменения, указывающая на явное влияние систематических погрешностей, были бы предприняты соответствующие меры по их устранению. Наглядным примером такой систематической погрешности может служить состояние резца, перемещение которого при автоматической обработке детали на токарном станке не учитывает его затупления.

Таким образом, контрольная карта помогает не только выявить несоответствие процесса требованиям потребителя, но и предвидеть возможности его появления в будущем.


ВЫВОДЫ

Все большее освоение рыночных отношений, диктует необходимость постоянного улучшения качества с использованием для этого всех возможностей, всех достижений прогресса в области техники и организации производства.

Наиболее полное и всестороннее оценивание качества обеспечивается, когда учтены все свойства анализируемого объекта, проявляющиеся на всех этапах его жизненного цикла: при изготовлении, транспортировке, хранении, применении, ремонте, тех. обслуживании.

Таким образом, производитель должен контролировать качество продукции и по результатам выборочного контроля судить о состоянии соответствующего технологического процесса. Благодаря этому он своевременно обнаруживает разладку процесса и корректирует его.

Система изложения теоретических основ статистических методов способствует лучшему пониманию принципов применения выборочного контроля и, по мере повышения надежности технологических процессов, позволяет приступить к сокращению производственных затрат на операции контроля путем снижения объемов выборки продукции.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Статистические методы повышения качества / Под ред. Х.Кумэ. – М.:  «Финансы и статистика», 1990. – 258 с. 135

2. Статистические методы повышения качества / Под ред. Х. Кумэ. – М.:  «Финансы и статистика», 1990. – 243 с.

3. Строителев В.Н. Статистические методы – основной инструмент специалиста в области качества // Качество, инновации, образование. 2002, №1, с. 11-17.

4. Технология машиностроения: В 2-х т. Т.1. Основы технологии машиностроения: Учебник для вузов / Под ред. А.М. Дальского. – М.: Изд-во МГТУ им. Баумана, 2001. – 564 с.

5. Фейгенбаум. А. Контроль качества продукции. – М.: «Экономика», 1986. – 472 с.

6. Фомин В.Н. Квалиметрия. Управление качеством. Сертификация: Курс лекций. – М.: Ассоциация авторов и издателей «ТАНДЕМ». Изд-во «ЭКМОС», 2000. – 320 с.

7. Харман Г. Современный факторный анализ. – М.: «Статистика», 1972. –  312 с.

8. Четыркин Е.М. Статистические методы прогнозирования. Издание 2-е.  М.: «Статистика», 1997. – 200 с.

9. Шикин Е.В., Чхатаршвили А.Г. Математические методы и модели в

управлении. – М.: «Экономика и статистика», 2000. – 448 с.

10. Р 50-601-19-91. Рекомендации. Применение статистических методов регулирования технологических процессов. – М.: Изд-во стандартов, 1992.

Ноулер Л. и др. Статистические методы контроля качества продукции. Пер. с англ. –  2-е русск. Изд. М.: Издательство стандартов, 1989

http://victor61058.narod.ru/part_4/4-3-2.html СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА  СТАТИСТИЧЕСКИЕ МЕТОДЫ УПРАВЛЕНИЯ КАЧЕСТВОМ



Поиск по файловому архиву
Fast Reply  Оставить отзыв  Add File

Collapse

> Статистика файлового архива

Десятка новых файлов 
0 пользователей за последние 3 минут
Active Users 0 гостей, 0 пользователей, 0 скрытых пользователей
Bing Bot
Статистика файлового архива
Board Stats В файловом архиве содержится 217129 файлов в 132 разделах
Файлы в архив загрузили 7 пользователей
Файлы с архива были скачаны 13157371 раз
Последний добавленный файл: Дельфин от пользователя admin (добавлен 2.1.2019, 21:39)
RSS Текстовая версия
Рейтинг@Mail.ru

Ариэль ШАРОН /ШЕЙНЕРМАН/
израильский генерал, премьер-министр страны с февраля 2001 года по январь 2006, когда в результате мозгового кровоизлияния оказался в коме и с тех пор не приходит в сознание.
>>>
Смотреть календарь

Образован первый в СССР национальный округ — Коми-Пермяцкий (Пермская область), ныне — Республика Коми. >>>
Смотреть календарь

КИРШПИЛЬ, см. кирка.

Реинжиниринг бизнес процессов

Бизнес-процессы и их границы. Основные и вспомогательные процессы. Необходимость использования консультантов при реинжиниринге бизнес-процессов. Функции, которые выполняют консультанты при реинжиниринге. Поря...