Микроэлементы, дозы, назначение

Описание:
ФИТОГОРМОНЫ — низкомолекулярные органические вещества, вырабатываемые растениями и имеющие регуляторные функции.
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

им. П. М. Машерова

Кафедра ботаники

РЕФЕРАТ

на тему

«Микроэлементы, дозы, назначение»

Выполнил                                                                        
                                                    студент               

Биологического факультета, 2 курса 23 группы     

Буко Анастасия Сергеевна         

Проверил                                                                                     
            Старший преподаватель                                

                                                                                
                        Коцур Владимир Михайлович

Витебск

2020

ФИТОГОРМОНЫ — низкомолекулярные органические вещества, вырабатываемые растениями и имеющие регуляторные функции. Действуют в очень низких концентрациях (порядка 10−11 моль/л), вызывают различные физиологические и морфологические изменения в чувствительных к их действию частях растений.

Общая характеристика

В отличие от животных, растения не имеют специальных органов, синтезирующих гормоны; вместе с тем отмечается большая насыщенность гормонами некоторых органов по сравнению с другими. Так, ауксинами богаче всего верхушечные меристемы стебля, гиббереллинами — листья, цитокининами — корни и созревающие семена. Фитогормоны обладают широким спектром действия.

Они регулируют многие процессы жизнедеятельности растений: прорастание семян, рост, дифференциацию тканей и органов, цветение, созревание плодов и т. п. Образуясь в одном органе (или его части) растения, фитогормоны обычно транспортируются в другой (или его часть).

Общие свойства

Химические соединения, которые вырабатываются в одних частях растений и оказывают своё действие в других, проявляют свой эффект в исключительно малых концентрациях, обладают (в отличие от ферментов) обычно меньшей специфичностью действия на процессы роста и развития, что объясняется разным состоянием работы генов воспринимающих клеток, от которого зависит результат действия гормона, а также разным соотношением между собой различных фитогормонов (гормональным балансом). Эффект фитогормонов в значительной мере определяется действием других внутренних и внешних измений.

Классификация и структура

Общепринята классификация, в которой среди растительных гормонов выделяют 5 основных групп классических гормонов. Гормоны разных растений могут отличаться по химической структуре, поэтому они сгруппированы по их влиянию на физиологию растений и общему химическому строению. Кроме того, некоторые физиологически активные вещества не принадлежат ни к одному из классов. Каждый класс включает в себя как стимуляторы, так и ингибиторы различных функций, и они часто работают в паре. В этом случае разница концентраций одного или нескольких веществ определяет конечный эффект на рост и развитие растения.

Основные группы классических гормонов:

- Абсцизины

- Ауксины

- Цитокинины

- Этилен

- Гиббереллины

Часто к этому списку добавляют и другие соединения: брассиностероиды, жасмонаты, полипептидные гормоныкрезацинолигосахариды.

1) АБСЦИЗОВАЯ КИСЛОТА (абсцизин, дормин — это гормон растений (изопреноид). Впервые была обнаружена в экспериментах по поиску вещества по способности вызывать опадение листьев и коробочек хлопчатника. Первые препараты абсцизовой кислоты (АБК) были независимо выделены в 1963 г. из листьев березы Ф. Эддикоттом и сотрудниками (США) и Ф. Уорингом и сотрудниками (Великобритания).

Основное место синтеза АБК — листья и корневой чехлик. Она присутствует в клетке как в свободной форме, так и в виде конъюгатов с глюкозой.

АБК называют гормоном-антагонистом ауксина, цитокининов, гиббереллина, так как она тормозит реакции, которые вызывают эти гормоны.

Биосинтез

По своей химической природе АБК, как и гиббереллины, является терпеноидом; у этих двух групп гормонов-антагонистов есть общий предшественник — геранилгеранил-дифосфат, который также является предшественником хлорофилла. Из ГГДФ синтезируются каротиноиды, их производным является зеаксантин, который является первым предшественником в пути биосинтеза АБК.

Биосинтез АБК в растении происходит в основном в молодых сосудистых пучках, а также в замыкающих клетках устьиц. Основными этапами биосинтеза АБК являются:

1.    Синтез виолоксантина из зеаксантина, который катализируют ферменты зеаксантин-эпоксидазы (ZEP).

2.    Синтез неоксантина из виолоксантина, который катализируют две группы ферментов: неоксантин-синтазы (NSY) и изомеразы, важные для синтеза цис-изомеров виолоксантина и неоксантина.

3.    Синтез ксантоксина из цис-неоксантина, который катализируют 9-цис-эпоксикаротеноид-диоксигеназы (NCED).

4.    Синтез АБК из ксантоксина через АБК-альдегид, две последовательные стадии которого катализируются ксангоксин-дегидрогеназой (АВА2) и АБК-альдегидоксидазой (ААОЗ).

Первые три этапа биосинтеза АБК, как и синтез каротиноидов, проходят в пластидах, последний — в цитозоле.

Инактивация и катаболизм

Существует два типа реакций, приводящих к инактивации АБК, — гидроксилирование и синтез конъюгатов.

С-7, С-8 и С-9-гидроксилированные формы АБК обладают слабой биологической активностью, кроме того, гидроксилирование по С-8 является первым шагом в образовании конъюгатов АБК с глюкозой.

АБК и её С-8-гидроксилированная форма являются мишенью для образования конъюгатов с глюкозой, наиболее распространенным среди которых является АБК-глюкозильный эфир. Как правило, конъюгаты АБК физиологически неактивны и накапливаются в вакуолях при старении. В то же время АБК-глюкозильный эфир играет роль в дальнем транспорте АБК, которая проходит по флоэме и ксилеме.

Функции

Среди функций АБК наиболее известными являются:

- контроль закрывания устьиц

- стимуляция созревания зародыша и периода покоя семян

- ингибирование прорастания.

- является одним из центральных регуляторов адаптации растений к абиотическим стрессам — таким, как высыхание, засоление и низкая температура.

- поддержания водного баланса в условиях засухи; недостаток влаги ведет к резкой активации синтеза АБК и её выходу из мест депонирования во внутри- и внеклеточное пространство.

К числу быстрых эффектов АБК, которые имеют место через несколько минут после повышения её концентрации, относится асимметричный транспорт ионов калия, кальция и анионов через мембрану замыкающих клеток устьиц, в результате чего замедляется поступление воды в клетки, их тургор падает, что приводит к закрытию устьичной щели. Одновременно абсцизовая кислота:

-активирует всасывание воды корнями

- является одним из ключевых регуляторов развития семян

- регулирует созревание зародыша

- препятствует преждевременному прорастанию семян при их созревании

- продлевает период покоя зрелых семян, спящих почек, клубней и корнеплодов.

Показана роль абсцизовой кислоты в опадании листьев. При подготовке к зиме абсцизовая кислота синтезируется в концевых почках растений. Это приводит к замедлению роста, а из прилистников образуются защитные чешуйки-колеоптели, покрывающие спящие почки в холодный период. Абсцизовая кислота останавливает деление клеток камбия и останавливает первичный и вторичный рост.

Место и время образования

- Образуется в период предуборочного подсушивания растений при уплотнении почвы

- Образуется в зеленых фруктах и семенах перед началом зимнего периода

- Может быстро транспортироваться из корней в листья по сосудам ксилемы

- Синтезируется в ответ на стрессовое воздействие факторов окружающей среды

- Синтезируется во всех органах растений — в корнях, цветках, листьях, стебле

Эффекты

- Вызывает закрывание устьиц, снижает транспирацию и предотвращает потерю влаги

- Останавливает созревание плодов

- Останавливает прорастание

- Ингибирует синтез ферментов, необходимых для фотосинтеза

2) АУКСИНЫ — группа растительных гормонов. Природные ауксины являются производными индола: 3-(3-индолил)пропионовая, индолил-3-масляная, 4-хлориндолил-3-уксусная и 3-индолилуксусная кислоты. Наиболее распространенным ауксином, широко применяющимся в растениеводстве, является гетероауксин — индолил-3-уксусная кислота.

Ауксины обладают высокой физиологической активностью. Стимулируют рост плодов и побегов растений, апикальное доминирование, фототропический рост (к свету), положительный геотропизм корней (рост вниз). Стимулируют рост клеток камбия. Влияют на рост клеток в фазе растяжения и дифференцировку клеток. Регулируют коррелятивный рост, обеспечивают взаимодействие отдельных органов. Усиливают рост придаточных корней. Уменьшение концентрации ауксина в растении приводит к увяданию листьев. В растении перемещается со скоростью 10 мм в час.

Биосинтез, катаболизм и инактивация

Основное место биосинтеза ИУК в растении — молодые листья и их примордии. Помимо растений, способностью к биосинтезу ИУК обладают некоторые грибы и патогенные бактерии (например, представители родов Agrobacterium и Pseudomonas, поражение которыми вызывает аномальное разрастание тканей растения-хозяина). У растений существуют два пути синтеза ИУК: подробно изученный триптофан-зависимый путь и триптофан-независимый путь, который до сих пор является гипотетическим.

Триптофан-зависимый путь представляет собой синтез ИУК из триптофана в несколько этапов. Существует несколько вариантов триптофан-зависимого пути биосинтеза ИУК, основными из которых являются:

- синтез через индолпировиноградную (IPA) кислоту

-через индолацетамид (IAM)

- через триптамин (ТАМ)

- через индолацетальдоксим (IAOx).

У разных видов растений преобладает тот или иной вариант триптофан-зависимого биосинтеза ИУК — например, у арабидопсис и других крестоцветных преобладающим является путь синтеза через IAOx; для Agrobacterium и Pseudomonas характерен путь синтеза через IAM. Триптофан-зависимый путь биосинтеза ИУК изучен весьма подробно; у растений и бактерий выделены ферменты, катализирующие все стадии разных его вариантов, выявлена значительная часть генов, кодирующих эти ферменты. Интересно, что мутанты с потерей функции генов, действующих на разных этапах триптофан-зависимого пути биосинтеза ИУК, часто характеризуются не пониженным, а повышенным содержанием ауксинов в тканях. Причиной этого является резкая активация других вариантов триптофан-зависимого пути синтеза ИУК при обрыве одного из них.

Помимо триптофан-зависимого пути биосинтеза ИУК, у растений существует триптофан-независимый путь, про который, несмотря на длительность изучения этого вопроса, абсолютно ничего не известно. Доказательством существования такого пути является получение жизнеспособных мутантов арабидопсис (trp l, 2, 3, 4 и 5) и кукурузы, дефектных по синтезу триптофана. Это мутанты с потерей функции генов, контролирующих разные стадии синтеза триптофана из его предшественника хоризмата. У них не синтезируется триптофан, но тем не менее наблюдается нормальный или даже многократно повышенный уровень ИУК. Вероятно, при невозможности работы у таких мутантов триптофан-зависимого пути биосинтеза ИУК у них происходит активация гипотетического пути синтеза ИУК без использования триптофана.

У растений также существует несколько путей инактивации ИУК:

-  во-первых, это образование индолбутировой кислоты (ИБК) — запасной формы ауксинов

- во-вторых — образование конъюгатов с аминокислотами и сахарами.

Конъюгаты обладают слабовыраженной ауксиновой активностью и также являются запасными формами ауксинов. Синтез конъюгатов осуществляет большая группа ферментов GH3-1. Экспрессия генов GH3-1 позитивно регулируется ауксинами — таким образом, имеет место негативная обратная связь в контроле уровня активной ИУК. Кроме того, у арабидопсис выявлены многочисленные ферменты, осуществляющие гидролиз конъюгатов с образованием активной ИУК, клонированы кодирующие их гены. Мутанты с потерей функции этих генов накапливают соответствующие конъюгаты и обладают повышенной чувствительностью к ним.

Полярный транспорт ауксинов

Поскольку основным местом биосинтеза ИУК являются апикальные части побега, необходим базипетальный транспорт ИУК в нижележащие органы растения. Существуют два вида транспорта ауксинов.

1. Быстрый транспорт по флоэме, представляющий собой перемещение ауксинов с потоком метаболитов и питательных веществ. Таким способом могут перемещаться по растению как активная ИУК, так и её конъюгаты.

2. Полярный транспорт ауксинов (ПАТ) характерен только для активной ИУК и происходит в основном по клеткам перицикла и молодым (живым) сосудистым элементам. При полярном транспорте имеет место вход ИУК в клетку с одной стороны и выход из неё с противоположной, в обоих процессах задействованы разные группы белков-переносчиков. Это транспорт более медленный и имеет строго выраженную направленность: в частности, в побеге он направлен базипетально, от апикальной меристемы и молодых листьев к корню; в кончике корня происходит разворот ПАТ, и дальше ИУК движется акропетально до зоны образования боковых корней. ИУК — единственный фитогормон, обладающий сложноорганизованной системой полярного транспорта; от направления ПАТ в различных органах растения зависит полярность их развития.

Определенные вещества, например, нафтилфталамовая кислота (NPA) и 2,3,5-трийодбензойная кислота (TIBA), специфически блокируют ПАТ. При этом происходит накопление ИУК внутри клеток, что позволило предположить существование по-разному организованных входных и выходных (influx и efflux) каналов для полярного транспорта ИУК, причем направление ПАТ связано с расположением входного и выходного канала на разных сторонах клетки (соответственно, на апикальной и базальной). Блокирование ПАТ с помощью NPA и TIBA связано с их влиянием на работу выходного канала.

Рецепция и передача сигнала ауксинов

Несмотря на длительное изучение ауксинов, в рецепции и передаче сигнала этих фитогормонов в настоящее время остается много нерешенных вопросов.

При длительном изучении ауксинов было выделено большое количество ауксин-связывающих белков (АВР) с разными функциями. В настоящее время функция в качестве рецепторов ауксина была продемонстрирована для двух белков:

• трансмембранного белка АВР1, взаимодействующего с G-белками;

• белка TIR1, входящего в состав убиквитин-лигазного комплекса SCF.

Каждый из этих белков при связывании ауксина запускает экспрессию ауксин-регулируемых генов, причем потеря функции каждого из них приводит к потере жизнеспособности растения. О взаимодействии этих двух независимых рецепторных систем или каком-либо разделении функций между ними в настоящее время ничего не известно.

Кроме того, в настоящее время не выявлены «средние» компоненты пути передачи ауксинового сигнала, действующие между рецептором АВР1 и ауксин-зависимыми транскрипционными факторами. При ответе на ауксин имеет место активация MAP-киназного каскада и киназы PID, но точное место этих протеинкиназ в пути передачи сигнала ауксинов не установлено.

Функции ауксинов в развитии растений

Функции ауксинов многообразны и связаны с такими характеристиками этих гормонов, как наличие полярного транспорта, стимуляция работы ионных каналов и контроль экспрессии определенных генов. К основным функциям этих фитогормонов относятся:

- контроль клеточного цикла

- стимуляция роста клеток растяжением

- контроль полярности развития растительного организма

- фото- и гравии- тропические реакции

- стимуляция закладки боковых и придаточных корней

- стимуляция закладки и развития латеральных органов в апикальной меристеме побега

3) ЦИТОКИНИНЫ — класс гормонов растений 6-аминопуринового ряда, стимулирующих деление клеток (цитокинез). С этой способностью цитокининов связаны их основные функции в развитии растений — например, поддержание апикальной меристемы побега. Кроме того, к физиологическим функциям цитокининов относятся стимуляция транспорта питательных веществ в клетку, ингибирование роста боковых корней, замедление старения листьев. Молекулярная масса (~ 5-20 кДа).

Цитокинины вовлечены в рост растительных клеток и другие физиологические процессы. Эффект цитокининов впервые был открыт на табаке в 1955 году Фольком Скугом.

Кроме природных цитокининов — производных 6-аминопурина, представленных изопентинилом, зеатином и 6-бензиламинопурином, известны и синтетические приозводные фенилмочевины, стимулирующие цитокинеза у растений — N,N"-дифенилмочевина и тидиазурон (N-фенил-N"-(1,2,3-тиадиазол-5-ил)мочевина). Цитокинины синтезируется в основном в корнях, а также в стеблях и листьях. Камбий и другие активно делящиеся ткани растений также являются местом синтеза цитокининов. Не показано, что цитокинины типа фенилмочевины естественно встречаются в тканях растений. Цитокинины участвуют в местной передаче сигнала, а также в передаче сигнала на расстоянии, причем последний механизм также используется для транспорта пуринов и нуклеозидов.

Механизм действия

Цитокинины участвуют во многих физиологических процессах растений, регулируют деления клеток, морфогенез побега и корня, созревание хлоропластов, линейный рост клетки, образование добавочных почек и старение. Соотношение ауксинов к цитокининам является ключевым фактором деления клеток и дифференцировки тканей растения.

В то время, как эффект цитокининов на сосудистые растения является плейотропным, цитокинины вызывают изменения роста протонемы у мхов. Образование почек можно считать вариантом дифференцировки клеток и этот процесс является очень специфическим эффектом цитокининов.

Биосинтез

Предшественниками биосинтеза цитокининов в растениях являются свободные АТФ и АДФ, а также тРНК. Первая стадия биосинтеза цитокининов — синтез изопентил-нуклеотидов из АТФ или АДФ и диметилаллилпирофосфата — катализируется ферментом изопентенилтрасферазой (IPT). Кроме IPT, у растений выявлены ферменты тРНК-IPT, использующие в качестве субстрата тРНК — они используются для синтеза цис-зеатина. В дальнейшем изопентенил-нуклеотиды могут превращаться в зеатин-нуклеотиды с помощью фитохром P450-монооксигеназ. Наконец, последней стадией является получение активных цитокининов из цитокининовых нуклеотидов путём дефосфорилирования и дерибозилирования — это реакция катализируется ферментом 5’монофосфат-фосфорибогидролазой, который кодируется геном LOG.

Фермент аденозинфосфатизопентилтрансфераза катализирует первую реакцию в биосинтезе изопреновых цитокининов, фермент использует АТР, ADP или AMP как субстрат и диметилаллилдифосфат или гидроксиметилбутенилдифосфат как донор пренильной группы. Данная реакция является лимитирующей в биосинтезе цитокининов, субстраты—доноры пренильных групп образуются в пентилэритрол-фосфатном биохимическом пути.

У растений и бактерий цитокинины также могут образовываться из продуктов распада тРНК. Транспортные РНК, с антикодоном, начинающимся с уридина и имеющие пренилированные аденозины рядом с антикодоном, освобождают при деградации аденозины как цитокинины. Пренилирование таких аденинов осуществляется тРНК-изопентилтрансферазой.

Показано также, что ауксины регулируют биосинтез цитокининов.

По последним данным, разные этапы биосинтеза цитокининов осуществляются в разных тканях растения. Основным местом синтеза цитокининовых нуклеотидов является кончик корня, небольшое их количество синтезируется также в апексе побега, цветках и плодах. По ксилеме цитокининовые нуклеотиды доставляются в апекс побега, который является основным местом синтеза активных свободных цитокининов.

Катаболизм и инактивация цитокининов

Основные ферменты катаболизма цитокининов — цитокинин-оксидазы, которые локализованы в вакуолях и эндоплазматическом ретикуллуме (ЭР) и осуществляет расщепление цитокининов с образованием аденина. Субстратами цитокинин-оксидаз являются свободные цитокинины и их рибозиды. Помимо расщепления цитокинин-оксидазами возможна обратимая или необратимая инактивация цитокининов путём образования конъюгатов.

Транспорт цитокининов

Основной транспортной формой цитокининов является зеатин-рибозид (ксилемный транспорт). Кроме того, существует транспорт цитокининов по флоэме, благодаря которому свободные цитокинины и их конъюгаты могут перемещаться по растению в обоих направлениях.

Транспорт цитокининов между клетками растения осуществляют две группы белков:

·    пуринпермеазы (PUP), которые транспортируют в клетку свободные цитокинины, а также аденин.

·    равновесные транспортеры нуклеозидов (ENT), которые осуществляют транспорт в клетку цитокинин-рибозидов.

Функции цитокининов в развитии растений:

·    контроль пролиферации клеток;

·    координация роста и развития растений в зависимости от доступности минерального и органического питания;

·    поддержание апикальной меристемы побега и ингибирование развития корневой системы;

·    предотвращение старения листьев.

В контроле большинства онтогенетических процессов цитокинины являются антагонистами ауксинов и гиббереллинов.

4) ЭТИЛЕН выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов), распускание бутонов (процесс цветения), старение и опадание листьев и цветков. Этилен называют также гормоном стресса, так как он участвует в реакции растений на биотический и абиотический стресс, и синтез его в органах растений усиливается в ответ на разного рода повреждения. Кроме того, являясь летучим газообразным веществом, этилен осуществляет быструю коммуникацию между разными органами растений и между растениями в популяции, что важно, в частности, при развитии стресс-устойчивости.

К числу наиболее известных функций этилена относится развитие так называемого тройного ответа у этиолированных (выращенных в темноте) проростков при обработке этим гормоном. Тройной ответ включает в себя три реакции: укорочение и утолщение гипокотиля, укорочение корня и усиление апикального крючка (резкий изгиб верхней части гипокотиля). Ответ проростков на этилен крайне важен на первых этапах их развития, так как способствует пробивание ростков к свету.

В коммерческом сборе плодов и фруктов используют специальные комнаты или камеры для дозревания плодов, в атмосферу которых этилен впрыскивается из специальных каталитических генераторов, производящих газообразный этилен из жидкого этанола. Обычно для стимулирования дозревания плодов используется концентрация газообразного этилена в атмосфере камеры от 500 до 2000 ppm в течение 24-48 часов. При более высокой температуре воздуха и более высокой концентрации этилена в воздухе дозревание плодов идёт быстрее. Важно, однако, при этом обеспечивать контроль содержания углекислого газа в атмосфере камеры, поскольку высокотемпературное созревание (при температуре выше 20 градусов Цельсия) или созревание при высокой концентрации этилена в воздухе камеры приводит к резкому повышению выделения углекислого газа быстро созревающими плодами, порой до 10 % углекислоты в воздухе спустя 24 часа от начала дозревания, что может привести к углекислотному отравлению как работников, убирающих уже дозревшие плоды, так и самих фруктов.

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR1 у арабидопсиса (Arabidopsis). Гены, кодирующие рецепторы для этилена, были клонированы у арабидопсиса и затем у томата. Этиленовые рецепторы кодируются множеством генов как в геноме арабидопсиса, так и в геноме томатов. Мутации в любом из семейства генов, которое состоит из пяти типов этиленовых рецепторов у арабидопсиса и минимум из шести типов рецепторов у томата, могут привести к нечувствительности растений к этилену и нарушениям процессов созревания, роста и увядания. Последовательности ДНК, характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий.

5) ГИББЕРЕЛЛИНЫ — группа фитогормонов дитерпеновой природы, которые выполняют в растениях разнообразные функции, связанные с контролем удлинения гипокотиля, прорастания семян, зацветания и т. д. В контроле большинства морфогенетических процессов гиббереллины действуют в одном направлении с ауксинами и являются антагонистами цитокининов и абсцизовой кислоты (АБК).

Основное место синтеза гиббереллинов в растении — листовые примордии и молодые листья. Можно выделить три основных этапа биосинтеза гиббереллинов:

1.   Синтез энт-каурена из ГГДФ — катализируется ферментами группы терпен-синтаз (TPS): CPS (копалил-дифосфат-синтазой) и KS (энт-каурен-синтазой). Эти же ферменты принимают участие в синтезе фитоалексинов. Все ферменты TPS локализованы в пластидах.

2.   Синтез GA12 из энт-каурена — катализируется ферментами группы Р450-монооксигеназ: КО (энт-каурен-оксидазой) и КАО (оксидазой энт-кауреновой кислоты). Этот этап биосинтеза гиббереллинов проходит в эндоплазматической сети.

3.   Синтез прочих гиббереллинов из GA12 происходит в цитозоле и катализируется ферментами группы 2-оксоглютарат-зависимых диоксигеназ (2ODD). Среди ферментов 2ODD следует выделить GA-20-оксидазы и GA-3-оксидазы, которые осуществляют синтез биологически активных GA1, GA3, GA4 и GA7; а также GA-2-оксидазы, катализирующие реакции инактивации гиббереллинов (например, превращение активного GA1 в неактивный GA8).

У арабидопсиса и риса каждый из ферментов, катализирующих первые этапы биосинтеза гиббереллинов, кодируется одним-двумя генами: например, в геноме арабидопсиса имеется по одному гену, кодирующему ферменты CPS, KS и KO. Потеря функции этих генов у мутантов ga1, ga2 и ga3 соответственно приводит к серьезному сокращению уровня гиббереллинов и развитию фенотипа, типичного для гиббереллин-дефицитных мутантов — это карлики с низкой плодовитостью, без добавления экзогенных гиббереллинов их семена имеют низкую всхожесть, а взрослые растения не формируют цветоноса. В то же время ферменты 2ODD, действующие на последнем этапе биосинтеза гиббереллинов, кодируются большими мультигенными семействами, члены которых обладают ткане- и органоспецифическим характером экспрессии, а также по-разному регулируются в зависимости от внешних условий и стадии онтогенеза. Мутации с потерей функции любого из этих генов имеют более слабое фенотипическое проявление.

Основными путями инактивации гиббереллинов являются 2β-гидроксилирование с помощью GA-2-оксидаз; эпоксидирование с помощью фермента из группы цитохром-Р450-монооксигеназ EUI (Elongated Uppermost Internode, назван по фенотипу мутанта с потерей функции соответствующего гена) и метилирование с использованием S-аденозил-метионина как донора метильных групп — эту реакцию катализируют ферменты GAMT1 и GAMT2 (GA Methyl Transferase). По-видимому, все эти пути инактивации имеют одинаково важное значение в регуляции пула активных гиббереллинов в растении, так как потеря функции любого из перечисленных генов у мутантов eui, gamt1 и gamt2, а также у трансгенных растений с косупрессией генов GA2ox ведет к повышению концентрации активных гиббереллинов в десятки раз. Кроме того, существует слабо изученный путь инактивации гиббереллинов за счет образования конъюгатов с глюкозой — GA-глюкозильных эфиров.

Функции:

1) Контроль прорастания семян   

Созревание семян связано с накоплением питательных веществ в зародыше и эндосперме. При прорастании происходит лизис запасных макромолекул эндосперма различными гидролитическими ферментами. Основную функцию в гидролизе крахмала в эндосперме выполняют α- и β-амилазы: α-амилазы гидролизуют крахмал до олигосахаридов, которые затем превращаются в мальтозу с помощью β-амилаз.

Гены α-амилаз были первыми генами, для которых установлен прямой контроль экспрессии с помощью гиббереллин-зависимого транскрипционного фактора GAMYB. Таким образом, гиббереллины, выделяемые зародышем, вызывают запуск экспрессии генов α-амилаз в алейроновом слое, что приводит к лизису крахмальных гранул эндосперма и обеспечивает молодой проросток питательными веществами.

Обработка растений гиббереллинами стимулирует пролиферацию клеток междоузлий и их рост растяжением. Гиббереллин-зависимое повышение частоты митозов наиболее хорошо заметно в субапикальных районах побега при переходе к цветению у розеточных растений длинного дня, а также в интеркалярных меристемах риса, растущего в глубокой воде. При этом в апикальной меристеме побега гиббереллины выполняют строго противоположную функцию — ингибируют пролиферацию и стимулируют дифференцировку клеток, благодаря чему для нормального развития растения важно поддерживание конститутивно низкой концентрации гиббереллинов в ПАМ. Таким образом, гиббереллины могут выполнять противоположные функции в контроле развития разных меристем.

2) Регуляция зацветания

Согласно многочисленным исследованиям существуют четыре основных пути регуляции зацветания: путь длинного дня, отвечающий за переход к цветению при увеличении продолжительности светового периода; автономный путь, который контролирует зацветание как при длинном, так и при коротком дне; путь вернализации, запускающий цветение после кратковременного периода низких температур; и гиббереллин-зависимый путь, который наиболее важен для перехода к цветению в условиях короткого дня.

Все эти пути могут взаимодействовать между собой — например, у арабидопсис, который может цвести как при длинном, так и при коротком дне. В связи с ослаблением гиббереллин-зависимого пути контроля зацветания, гиббереллин-дефицитные ga-мутанты арабидопсис совсем не цветут при коротком дне, а также демонстрируют задержку цветения в условиях длинного дня.

В основе гиббереллин-зависимого контроля зацветания лежит позитивная регуляция экспрессии генов, играющих ключевую роль в интеграции процессов цветения: индуктора экспрессии гомеозисных генов цветка — гена LEAFY (LFY), основного инициатора цветения — гена FLOWERING LOCUS T (FT) и его мишени — гена SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1).

В промоторе гена LFY обнаружена GAMYB-связывающая последовательность, с которой напрямую взаимодействует транскрипционный фактор GAMYB33. Мутации по GAMYB-связывающей последовательности делают невозможным повышение уровня экспрессии LFY в условиях короткого дня. В то же время трансформация гиббереллин-дефицитных ga-мутантов геном LFY под конститутивным промотором запускает их цветение при коротком дне.

У растений длинного дня роль гиббереллинов в контроле зацветания менее понятна. У этих растений увеличение продолжительности светового периода стимулирует рост стебля в длину (особенно хорошо это заметно у розеточных растений) с последующей индукцией цветения. Причиной этого, по-видимому, является фитохром-зависимое повышение уровня экспрессии генов GA20ox, которое приводит к увеличению концентрации свободных гиббереллинов в побегах. На арабидопсис было показано, что повышение концентрации гиббереллинов в листьях приводит к усилению экспрессии гена FT, кодирующего белок-флориген, который синтезируется в листьях и в дальнейшем перемещается в ПАМ. К сожалению, молекулярные механизмы влияния гиббереллинов на экспрессию FT в настоящее время не выяснены.

3) Роль в регуляции перехода к цветению

1.   Фитохром-зависимое повышение концентрации GA20ox в листьях вызывает повышение концентрации гиббереллинов, которое, в свою очередь, вызывает повышение концентрации белка FT. Этот процесс может также регулироваться фотопериодом, через ТФ СО. Белок FT перемещается из листьев в ПАМ.

2.   Повышение уровня гиббереллинов в ПАМ вызывает усиление экспрессии гена SOC, который негативно регулируется DELLA-белками GAI и RGA. Этот процесс негативно регулируется ТФ KNOX, которые стимулируют экспрессию генов GA2ox в Rib-зоне ПАМ.

3.   Экспрессия гена LFY напрямую позитивно регулируется гиббереллин-зависимым ТФ GAMYB33. DELLA-белки GAI и RGA негативно регулируют этот процесс через miPHK 156.

4.   Белки SOC1 и AGAMOUS-LIKE 24 (AGL24) формируют гетеродимер и позитивно регулируют экспрессию гена LFY; ТФ LFY позитивно регулирует экспрессию генов SOC1 и AGL24.

Итак, функции гиббереллинов связаны со стимуляцией вегетативного развития растений (прорастание, рост стебля в длину) и генеративного развития (перехода к цветению). Гиббереллины действуют в одном направлении с ауксинами и стимулируют биосинтез и передачу сигнала друг друга; кроме того, системы их рецепции передачи сигнала организованы по одному плану (рецептора взаимодействуют с компонентами убиквитин-лигазных комплексов Е3 и индуцируют протеолиз транскрипционных репрессоров). Цитокинины и АБК, напротив, являются антагонистами гиббереллинов.

Информация о файле
Название файла Микроэлементы, дозы, назначение от пользователя Гость
Дата добавления 23.5.2020, 15:56
Дата обновления 23.5.2020, 15:56
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 50.86 килобайт (Примерное время скачивания)
Просмотров 645
Скачиваний 131
Оценить файл