Конструктивные формы исполнения электрических машин

Описание:
Применение Электрических машин КОНСТРУКТИВНЫЕ ФОРМЫ ИСПОЛНЕНИЯ ЭЛЕКТРИЧЕСКИХ МАШИН.Основные конструктивные исполнения Электрических машин. Расчет отдельной машины и серии машин. Расчет электродвигателя.
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

            "Национальный исследовательский ядерный университет "МИФИ"

                  Курсовая работа

По предмету: «Технология сборки и монтажа электронных приборов и устройств»    

             На тему: «Конструктивные формы исполнения электрических машин»  

Выполнил: Студент группы ЭПУ-371д Ротканов Е.С

Проверила: Осетрова Е.В

                                                              г.Лесной

                                                                 2020 г

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ            Применение Электрических машин КОНСТРУКТИВНЫЕ ФОРМЫ ИСПОЛНЕНИЯ ЭЛЕКТРИЧЕСКИХ МАШИН                                                                           
           

1.1Подход к проектированию Электрических машин…………………………4

1.2Проблемы оптимального проектирования………………………………….10

1.3Основные конструктивные исполнения Электрических машин…………..13

Практическая часть

1.   Расчет отдельной машины и серии машин………………………………31

2.   Расчет электродвигателя………………………………………………….38

 ВВЕДЕНИЕ:

 Электрические машины применяют во всех отраслях промышленности, в сельском хозяйстве и в быту. Их выпускают большими сериями и в индивидуальном исполнении. Во многих случаях электрические машины определяют технический уровень изделий, в которых они используются в качестве генераторов и двигателей. Проектирование электрических машин требует глубоких знаний и высокого профессионального мастерства.

 Конструктивные формы исполнения электрических машин определяются степенью защиты, способами охлаждения и монтажа, воздействием климатических факторов окружающей среды и категорией мест размещения электрических машин при эксплуатации.
Степени защиты электрических машин для обслуживающего персонала и от попадания внутрь твердых тел и воды регламентированы

ГОСТ 17494—72. Условное обозначение степени защиты состоит из двух букв IP (начальные буквы английских слов International protektion) и двух цифр.

 Первая цифра обозначает степень защиты персонала от соприкосновения с токоведущими и вращающимися частями и от попадания внутрь машины твердых тел; вторая цифра обозначает степень защиты от проникновения воды внутрь машины
Для обозначения степеней защиты электрических машин напряжением до 1000 В применяют цифры.

1.1Подход к проектированию Электрических машин

 Впервые электрические машины получили применение в промышленности более ста лет назад. Тогда же появились и первые рекомендации по их расчету. В конце XIX в. в Европе и Америке появились крупные электротехнические фирмы «Сименс», «Вестингауз», АЭГ и другие, на которых сложились крупные конструкторские и расчетные отделы. В это время начинают издаваться первые электротехнические журналы. В России журнал «Электричество» начал издаваться в 1880 г.

 В России первые электротехнические заводы появились в начале XX в. Это «Электросила» в С.-Петербурге, «Динамо» в Москве и заводы в Харькове и Таллине. В годы первых пятилеток Москва, Ленинград и Харьков превратились в крупные производственные центры электропромышленности. После Великой Отечественной войны электротехническая промышленность развивалась бурными темпами, и в настоящее время крупные центры электромашиностроения есть в десятках городов СНГ. Около пятидесяти кафедр высших учебных заведений выпускают специалистов по электрическим машинам.

 Первые фундаментальные работы по расчетам и проектированию электрических машин появились в конце десятых — начале двадцатых годов XX в. Это были книги Э. Арнольд, М. Видмара, А. Ла-Кура, Р. Рихтера, К.И. Шенфера, В.С. Кулебакина и др.

 Первыми отечественными трудами по проектированию были книги А.Я. Бергера, П.П. Копняева, В.А. Пантелеева и Ф.И. Холуянова. Большой вклад в проектирование электрических машин внесли работы ученых А.Е. Алексеева, Б.П. Апарова, А.И. Вольдека, В.Т. Касьянова, М.П. Костенко, Б.И. Кузнецова, Р.А. Лютера, Г.Н. Петрова, И.М. Постникова, П.С. Сергеева, Т.Г. Сорокера, В.А. Трапезникова и др.

 Проектирование электрической машины — сложная многовариантная задача. При ее решении приходится учитывать большое количество факторов. Единственным стремлением всех, кто проектирует машину, является получение, по возможности наиболее быстрым путем, более близкого к заданию расчетного варианта. Поэтому методики, подход к расчету и проектированию электрических машин на всех этапах развития включали все новейшие достижения ву теории и практике электромашиностроения.

 Большинство расчетных методик исходит из так называемой «машинной постоянной», определяемой из допустимых электромагнитных нагрузок.

 Машинная постоянная Арнольда записывается в виде:

                                            (1.1)

где   — диаметр якоря машины постоянного тока или внутренний диаметр статора, м;   — расчетная длина магнитопровода, м;   — угловая скорость, рад/с;   — расчетная мощность, ВА;   — линейная нагрузка, А/м;   — индукция в воздушном зазоре, Тл;   — коэффициент полюсного перекрытия;   — коэффициент формы кривой индукции, учитывающий изменение напряжения на выводах машины при холостом ходе и нагрузке;   — обмоточный коэффициент.

 Определив   для различных типов электрических машин, можно получить базу для их расчетов. Машинная постоянная не является константой и зависит от электромагнитных нагрузок, напряжения, типа изоляции, системы охлаждения, стоимости материалов, надежности работы машины, суммы капитальных и эксплуатационных затрат и других факторов.

 Ученые в разное время по-своему интерпретировали машинную постоянную. Эссон в конце 20-х годах XX в. предложил при проектировании применять коэффициент использования машины — момент на единицу объема, по существу, величину, обратную постоянной Арнольда.

 Машинная постоянная Рихтера есть момент, отнесенный к единице поверхности якоря. В машинной постоянной Шенфера вместо внутреннего диаметра статора используется внешний диаметр.

 В 1926 г. В.С. Кулебакин при выборе главных размеров синхронных машин учитывал токи короткого замыкания. В 1934 г. Б.П. Апаров для синхронных машин предложил при выборе главных размеров исходить из необходимой кратности пускового и максимального моментов.

 Г.Н. Петров вводит понятия единичной машины и касательной силы, действующей на единицу поверхности ротора. Касательная сила зависит от мощности машины, но даже у самых крупных машин не превышает 0,03…0,04 МПа.

 Развитие теории электрических машин и широкое применение вычислительных машин изменяют подход к проектированию электрических машин. Наиболее общим показателем для различных типов электрических машин становится удельная мощность энергии магнитного поля, сконцентрированная в воздушном зазоре машины [5,6].

 Масса на единицу мощности является одним из основных факторов, характеризующих технический уровень электрических машин. По сравнению с 1913 г. масса асинхронных двигателей современных серий снижена более чем в 3 раза (рис. 1.1). Наиболее значительное снижение массы было достигнуто в 1920…1950 гг. Предполагается, что в 2000…2001 гг. сокращение массы может составить не более 4—5%. В дальнейшем будет еще труднее обеспечить снижение массы при практически неизменном уровне энергетических показателей электрической машины. Даже небольшой процент сокращения расхода активных материалов потребует серьезных работ по усовершенствованию конструкции, технических свойств изоляционных и магнитных материалов. Снижение металлоемкости необходимо, так как выпуск машин единых серий постоянно увеличивается.

Рис. 1.1. Снижение массы асинхронных двигателей в XX в

 Удельный расход материалов в турбогенераторах с 1952 г. снизился более чем в 3 раза. Турбогенератор на 150 тыс. кВт с водородным охлаждением имел массу 350 т. Турбогенератор ТВВ-1200-2 имеет массу на единицу мощности, равную 0,457 кг/(кВ·А).

 Значительный рост цен на медь приводит к повышению цены на обмоточные провода. Поэтому реальный становится проблема замены медных проводов на ферромагнитные (стальные) провода, имеющие активное сопротивление в десять раз больше, чем медные. Однако хорошие магнитные свойства и увеличение сечения проводов делают реальным замену медных обмоточных проводов на ферромагнитные при сохранении энергетических характеристик двигателей при некотором увеличении их габаритов.

 Проектирование новых электрических машин со стальными обмотками потребуется сосредоточить усилия и талант многих коллективов инженеров-электромехаников. Вполне реальна замена меди в общепромышленных сериях электрических машин мощность до 5 кВт, так как в этом диапазоне мощности электротехническая промышленность потребляет свыше 50% меди.

 Как следует из формулы (1.1), размеры машины зависят от индукции в воздушном   и линейной нагрузки  .

 При рассмотрении электрической машины как объекта разработки необходимо учитывать объем и длительность проектных, расчетных и технологических работ.

 Предпроизводственные работы включают изготовление рабочих чертежей, технологической оснастки и опытных образцов.

 Этот этап требует достаточно много времени и больших коллективов конструкторов и технологов. Качество разработки проекта определяет судьбу электрической машины в производстве и эксплуатации.

 Электрическая машина как объект производства должна иметь минимальную трудоемкость и капитальные минимальные вложения в производство. Для этого необходимы технологическая конструкция и максимальное использование существующего технологического оборудования и оснастки.

 С каждым годом повышается механизация и автоматизация электромашиностроительных заводов. Широко используются станки для механизированной укладки обмотки статоров и якорей электрических машин, применяются высокопроизводительные штампы и прессы. Для сборочных работ используются работы, для изготовления валов и станин применяются автоматизированные линии. В ближайшие годы на заводах будут широко использоваться гибкие автоматизированные комплексы. При проектировании машины необходимо учитывать особенности производства, на котором предполагается изготовление машины.

 После распада СССР более 43% производственных мощностей по выпуску электрических машин остались за границей, в странах СНГ. Россия лишилась целого ряда габаритов асинхронных двигателей с высотами оси вращения 63, 71, 80, 90, 200, 222 и 250 мм. В то же время заводы столкнулись с резким спадом спроса на выпускаемую продукцию. Все это потребовало структурной перестройки российских электромашиностроительных предприятий.

 Если раньше завод производил асинхронные двигатели одной- двух высот вращения, то теперь потребовалось, например Ярославскому электромашиностроительному заводу ОАО ЯЭМЗ, выпускать двигатели всех модификаций от 0,30 до 100 кВт, Владимирскому электромоторному заводу ВЭМЗ — от 0,1 до 1250 кВт.

 Сложившиеся условия потребовали от инженеров-электромехаников новых подходов к проектированию и организации производства электрических машин. Значительно сократились сроки проектирования и подготовки производства небольших, но многообразных модификаций серий электрических машин. Если раньше электромашиностроители диктовали условия для потребителей, то теперь заказчик определяет номенклатуру изделий. Многообразие типов и модификаций машин снизило возможности автоматизации производства и поставило на первый план технологические возможности быстрого перехода к выпуску мелких партий электрических машин.

 Важнейшим требованием при производстве является минимальная материалоемкость электрических машин. Экономия электротехнической стали, меди, алюминия, изоляции и конструкционных материалов является важнейшим требованием при создании новой электрической машины.

 Экономия материалов связана с безотходной и малоотходной технологией. При штамповке листов стали статора и ротора в среднем 40% стали идет в отходы, а в некоторых случаях 60…70%. В  машинах малой мощности за счет изменения конструкции и технологии изготовления магнитной системы можно значительно уменьшить отходы электротехнической стали [2].

 Электрические машины с безотходной технологией изготовления имеют преимущества перед обычными машинами, если сохраняются и требования к машине как к объекту эксплуатации.

 Как объект эксплуатации электрическая машина должна иметь высокие энергетические показатели (КПД и  ). Электрические машины с минимальными потерями позволяют уменьшить вложения материалов в энергосистему. Высокие энергетические показатели электрической машины гарантируют снижение уровня текущих затрат на эксплуатацию и капитальные вложения потребителя.

 Улучшение энергетических показателей электрических машин стало особенно актуальным в связи с ростом цен на энергоносители. Вновь разрабатываемые электрические машины должны соответствовать высшей категории качества. Они должны быть надежными и, как правило, иметь срок службы 8…10 лет.

 Показатели экономической эффективности электрической машины могут быть установлены на основании анализа приведенных затрат, которые включают затраты на изготовление и эксплуатацию машин.

  1.2 Проблемы оптимального проектирования

 Проектирование электрической машины сводится к многократному расчету зависимостей между основными показателями, заданных в виде системы формул, эмпирических коэффициентов, графических зависимостей, которые можно рассматривать как уравнения проектирования. Оптимальное проектирование электрических машин можно представить как поиск оптимальных параметров путем решения этой системы уравнений.

 Выбор оптимальных параметров затрудняется сложностью алгоритма расчета электрической машины по формулам проектирования. При проектировании необходимо учитывать стоимость машины, надежность и технологичность конструкции. Эти показатели косвенно входят в формулы проектирования, что затрудняет оптимизацию. Оптимальные варианты электрической машины выбираются на основании широкого применения вычислительных машин, опыта и интуиции проектировщика.

 Анализ приведенных затрат применительно к асинхронным двигателям единой серии до 10 кВт показал, что примерно 70% затрат составляют текущие расходы на их эксплуатацию. На долю капиталовложений приходится лишь 15…20% всех затрат. Следовательно, повышение эффективности новых электрических машин связано, прежде всего со снижением эксплуатационных расходов. Первоочередное значение здесь имеют повышение надежности работы машин и улучшение их энергетических показателей, при этом повышение КПД экономически более выгодно, чем повышение  .

 Повышение надежности и улучшение КПД должны достигаться без заметного увеличения затрат на изготовление электрической машины. Сокращение расходов на электротехническую сталь и обмоточные провода может дать существенное уменьшение себестоимости электрической машины.

 Хотя основная заработная плата и составляет 5…8% себестоимости, снижение трудоемкости механических и обмоточно-изолировочных работ имеет важное значение. В свое время в связи с увеличением выпуска электрических машин и недостатком рабочей силы снижение трудоемкости было настолько важно, что в серии 4А пошли на некоторое снижение энергетических показателей, увеличив размеры шлиц пазов для возможности машинной намотки обмотки.     Проектирование электрических машин неотделимо от конструирования и технологии изготовления, связанных с условиями, переживаемыми государством.

 При оптимизации электрических машин важное значение имеет выбор критерия оптимизации. Выбор критерия оптимизации зависит от назначения электрической машины и предъявляемых к ней требований. Для специальных машин целесообразно выбирать минимум массы или минимальные габариты. Для электрической машины общего назначения в качестве критерия оптимизации принимают минимум приведенных затрат. Этот критерий широко применяется во многих странах.

 Приведенные затраты на электрическую машину в процессе производства и эксплуатации являются обобщающим экономическим показателем, включающим основные экономические эквиваленты основных технических характеристик. Нельзя найти универсальный критерий оптимальности. Действительно, минимальная масса машины обуславливает снижение энергетических показателей и ухудшение надежности. Наиболее очевидны противоречия между статическими и динамическими характеристиками. Для уменьшения времени разбега асинхронного двигателя надо увеличивать активное сопротивление обмотки ротора, что вызывает ухудшение энергетических показателей в установившемся режиме.

 Выбор критерия оптимизации электрической машины, работающей в автономной энергетической системе, обычно отличается от выбора критерия оптимизации машин общего назначения. Машины автономных энергетических систем в большинстве случаев оптимизируют по минимуму массы, а в передвижных энергетических системах — по минимуму общей массы электрооборудования системы. Если электрическая машина работает при неизменном напряжении, приложенном к ее выводам и не зависящем от нагрузки (сеть бесконечной мощности), задачу оптимизации машины следует проводить по минимуму суммарных затрат.

 Задача оптимального проектирования электрической машины или серии машин может быть представлена как общая задача нелинейного математического программирования, которая сводится к нахождению минимума или максимума критерия оптимальности при наличии определенного числа независимых переменных проектирования и функций лимитеров, представляющих собой технические или технологические требования-ограничения к проекту.

 Применение ЭВМ при проектировании для расчетов электрических машин началось в начале 50-Х годов XX в. Во ВНИИЭМ ЭВМ использовались для расчетов серий асинхронных машин. В настоящее время ни один расчет электрических машин не обходится без применения ЭВМ. В большинстве случаев ЭВМ используются для расчетов отдельных частей или всей электрической машины по существующим методикам, что обеспечивает ускорение вычислений, перебор многих вариантов, дает возможность в короткие сроки создать оптимальную электрическую машину.

 Внедрение ЭВМ в проектирование привело к существенному повышению технико-экономических показателей электрических машин, снижению сроков проектирования, обеспечило качественный сдвиг в решении задач оптимального проектирования.

 При проектировании электрических машин применяются в основном цифровые ЭВМ. Аналоговые ЭВМ удобно применять при решении задач динамики. Недостатками их являются ограниченный объем решаемой задачи и малая универсальность. Цифровые ЭВМ лишены этих недостатков, однако они требуют трудоемкого программирования. Чтобы избежать излишних потерь времени, целесообразно создавать универсальные программы и хранить их в банках данных.

 В настоящее время решается задача комплексной автоматизации проектирования электрических машин. Этой цели служит система автоматизированного проектирования электрических машин (САПР ЭМ). Однако на заводах и НИИ используются свои программы, отличающиеся друг от друга и появившиеся в различное время.

 Широкая автоматизация проектных работ изменит в ближайшие годы процесс проектирования электрических машин, произойдут значительные изменения и в учебном проектировании. В гл. 12 описание САПР ЭМ. Данный учебный рассчитан на применение частных программ и мини-ЭВМ, так как пока еще не накоплен достаточный опыт промышленного автоматического проектирования электрических машин, а без использования классических формул проектирования невозможно заниматься и использовать САПР ЭМ.

1.3Основные конструктивные исполнения электрических машин

 Почти все электрические машины имеют вращательное движение, причем вращается одна часть машины – ротор.

 Независимо от рода питания (постоянного или переменного тока) электрические машины можно разделить на явно- и неявнополюсные. К неявнополюсным машинам относятся асинхронные машины и быстроходные синхронные машины (турбогенераторы и турбодвигатели). Явно выраженные полюсы располагают либо на роторе (синхронные машины), либо на статоре (машины постоянного тока). В специальных случаях машины постоянного тока могут быть с вращающимися обмотками возбуждения, а синхронные машины – с неподвижными. Такие машины принято называть обращенными.

 За 100 лет промышленного применения электрических машин их конструкция претерпела значительные изменения. На рис. (1.3 )  дана одна из первых конструкций машины постоянного тока, сконструированной З. Граммом и изготовленной фирмой «Альянс» в середине семидесятых годов ХIХ века. В этой машине на станине 1 укреплены электромагниты 2 с полюсными наконечниками 3, между которыми вращается якорь 4. Щетки скользят по коллектору 5.

Рис. 1.3. Машина постоянного тока:

а — фирма «Альянс»

На рис.( 1.3  ) представлен общий вид машины постоянного тока серии ПН, которая выпускалась в СССР после Отечественной войны. На рис.( 1.3 )  дана конструкция машины серии 2П, которая выпускалась в начале 70-х годов ХХ в.

Рис. 1.3. Машины постоянного тока:

б — серии ПН; в — серии 2П

 Конструкция машины новой серии 4П показана на рис. (1.3  ). Эта унифицированная конструкция, имеющая ряд деталей, заимствованных от серии асинхронных машин 4А, выпускается с середины 80-х годов ХХ в.

Рис. 1.3. Машина постоянного тока:

г — серии 4П

 Условия, в которых работают электрические машины, классифицируют по ряду признаков (направление оси вала, чистота окружающего воздуха, его температура, влажность и т.п.), в зависимости от которых выпускают машины различных конструктивных исполнений.

 При эксплуатации электрических машин возникает необходимость устанавливать их не только в горизонтальном, но и в вертикальном положениях. В зависимости от способа крепления, направления оси вала и конструкции подшипниковых узлов конструктивные исполнения машин по способу монтажа делят на девять конструктивных групп (ГОСТ 2479), каждая из которых подразделяется, в свою очередь, на несколько форм исполнения. Условное обозначение содержит буквы латинского алфавита IМ и четыре цифры. Первая цифра определяет группу конструктивного исполнения ( от 1 до 9), вторая и третья – способ монтажа и направление конца вала, четвертая – исполнение конца вала (от 0 до 8).

 Структура условного обозначения конструктивного исполнения электрических машин по способу монтажа:

  IM    

Группы конструктивных исполнений:

1 – на лапах с подшипниковыми щитами (с пристроенным редуктором);

2 – на лапах с подшипниковыми щитами, с фланцем на подшипниковом щите (или щитах);

3 – без лап, с подшипниковыми щитами, с фланцем на одном подшипниковом щите (или щитах), с цокольным фланцем;

4 – без лап с подшипниковыми щитами, с фланцем на станине;

5 - без подшипниковых щитов;

6 – на лапах с подшипниковыми щитами и стояковыми подшипниками;

7 – на лапах со стояковыми подшипниками (без щитов);

8 – с вертикальным валом, кроме групп от IМ1 до IМ4;

9 – специального исполнения по способу монтажа.

Исполнения концов вала (концом вала называется его часть, выступающая за подшипник):

0 – без конца вала;

1 – с одним цилиндрическим;

2 – с двумя цилиндрическими;

3 – с одним коническим;

4 – с двумя коническими;

5 – с одним фланцевым;

6 – с двумя фланцевыми;

7 – с фланцевым со стороны привода и цилиндрическим на противоположной стороне;

8 – все прочие исполнения концов вала.

Примеры условного обозначения форм конструктивного исполнения электрических машин приведены в табл. 1.1.

Таблица 1.1.

Примеры условного обозначения форм конструктивного исполнения электрических машин

Группа исполнения

Конструктивное исполнение

Обозначение

IM1

Машины на лапах с подшипниковыми щитами

С двумя подшипниковыми щитами, на лапах, вал горизонтальный с цилиндрическим концом

IM 1001 

То же, вал вертикальный с цилиндрическим концом, направленным вниз

IM 1011 

IM2

Машины на лапах с подшипниковыми щитами, с фланцем на подшипниковом щите (или щитах)

На лапах, с фланцем на одном подшипниковом щите, доступным с обратной стороны, вал горизонтальный с цилиндрическим концом

IM 2001 

На лапах, с фланцем на одном подшипниковом щите, недоступным с обратной стороны, вал вертикальный с цилиндрическим концом, направленным вверх

IM 2131   

IM3

Машины без лап, с подшипниковыми щитами, с фланцем на одном подшипниковом щите (или щитах)

С двумя подшипниковыми щитами, с фланцем на стороне D,доступным с обратной стороны, вал горизонтальный с цилиндрическим концом

IM 3001 

С двумя подшипниковыми щитами, с фланцамидоступными с обратной стороны на обоих подшипниковых щитах, вал вертикальный с цилиндрическим концом

IM 3912 

IM4

Машины без лап с фланцем на станине

С двумя подшипниковыми щитами, с фланцем на стороне D,доступным с обратной стороны, вал горизонтальный с цилиндрическим концом

IM 4001 

С одним подшипниковым щитом, с фланцем на стороне N,доступным с обратной стороны, вал вертикальный с цилиндрическим концом, направленным вверх

IM 4731 

IM5

Машины без подшипниковых щитов

Без станины с ротором и горизонтальным валом с цилиндрическим концом

IM 5001 

Со станиной на лапах, с ротором, без вала

IM 5410 

IM6

Машины с подшипниковыми щитами и стояковыми подшипниками

На лапах с двумя подшипниковыми щитами, с одним стояковым подшипником на стороне D,без фундаментальной плиты

IM 6000 

Со станиной на лапах, с фундаментальной плитой, с одним стояковым подшипником на стороне N,c одним подшипниковым щитом

IM 6211 

IM7

Машины со стояковыми подшипниками (без подшипниковых щитов)

Без фундаментальной или опорной плиты, станина на лапах, с одним стояковым подшипником

IM 7001   

С фундаментальной плитой на приподнятых лапах, с двумя стояковыми подшипниками

IM 7610 

IM8

Машины с вертикальным валом, кроме машин групп от IM1 до IM4

С подпятником и направляющим подшипником, расположенными под ротором, с валом, без маховика

IM 8201 

С подпятником и направляющим подшипником, расположенными под ротором, с валом, без маховика

IM 8411 

IM9

Машины специального исполнения по способу монтажа

Встраиваемое исполнение с цилиндрической станиной (или без станины), с двумя подшипниковыми щитами, вал горизонтальный с цилиндрическим концом

IM 90001 

С двумя подшипниковыми щитами на лапах в горизонтальной плоскости, вал  вертикальный с цилиндрическим концом

IM 9631 

 Примечание: Под стороной вала D понимается сторона, обращенная к приводному механизму для двигателей, а для генераторов – сторона, обращенная к турбине или дизелю. При двух концах вала – сторона вала с концом большего размера, а при равных диаметрах для машин на лапах с коробкой выводов, расположенных не сверху, - сторона, с которой коробка выводов видна справа. N – сторона вала, противоположная D.

 Электрические машины эксплуатируются в различных климатических условиях, различной влажности, температуре окружающего воздуха, давлении (различной высоте над уровнем моря), в атмосфере, содержащей те или иные коррозионно-активные элементы, и при других условиях, существенно отличающихся от нормальных. В нашей стране за нормальные условия принимают температуру окружающей среды (+25 ± 10)0С, относительную влажность воздуха 35…80% и атмосферное давление 84…106 кПа. Чем более отличны условия, в которых эксплуатируется машина, от нормальных, тем значительнее отличается конструкция ее корпуса, обмоток, различных уплотнений и изоляции от принятых в машинах общего назначения. ГОСТ 15150-69 и ГОСТ 15543-89Е классифицируют макроклиматические районы и места установки машин в зависимости от факторов, влияющих на условия эксплуатации электрических машин, и определяют обозначения машин, предназначенных для работы в тех или иных условиях (табл. 1.2).

ТАБЛИЦА 1.2   

 Условное обозначение

Исполнение

Обозначение

Электрические машины, предназначенные для эксплуатации на суше, реках, озерах для макроклиматических районов: с умеренным климатом

    У

с холодным климатом

ХЛ

с влажным тропическим климатом

ТВ

с сухим тропическим климатом

ТС

как с сухим, так и с влажным тропическим климатом

Т

для всех макроклиматических районов на суше (общеклиматическое исполнение)

  О

Электрические машины, предназначенные для установки на морских судах для макроклиматических районов: с умеренно холодным морским климатом

    М

с тропическим морским климатом для судов каботажного плавания или иных, предназначенных для плавания только в тропической зоне

  ТМ

для неограниченного района плавания

ОМ

Электрические машины, предназначенные для всех макроклиматических районов на суше и на море

В

Категория размещения электрических машин обозначается цифрой (от 1 до 5), следующей за буквенным обозначением климатического исполнения.

 Машины, которые можно эксплуатировать на открытом воздухе обозначаются цифрой 1, в закрытом помещении, где температура и влажность воздуха несущественно отличаются от колебаний наружного воздуха, — 2, если машины рассчитаны на работу в закрытых помещениях, в которых колебания температуры и влажности, а также воздействие песка и пыли существенно меньше, чем на открытом воздухе, — 3; в помещениях с искусственно регулируемыми климатическими условиями, например в закрытых отапливаемых помещениях, — 4; в помещениях с повышенной влажностью, в которых возможно длительное наличие воды и происходит частая конденсация влаги на стенах и потолке, например в неотапливаемых и невентилируемых подземных помещениях, —5.

 Обозначение ХЛ1 означает, что машина может работать в районах с холодным климатом при установке на открытом воздухе. Двигатели общего назначения, к которым не предъявляют каких-либо дополнительных требований, имеют исполнение У3 или У4 , т. е. они могут работать в районах с умеренным климатом в закрытых помещениях категории 3 или 4.

 Существуют исполнения по степени защиты от попадания внутрь машины твердых посторонних тел и воды и от соприкосновения обслуживающего персонала с токоведущими и вращающимися частями, находящимися внутри машины. Этот вид исполнения обычно называют исполнением по степени защиты. ГОСТ 14254—80 устанавливает буквенно-цифровое обозначение исполнения, состоящее из латинских букв IP и двух цифр. Первая цифра (от 0 до 6) характеризует степень защиты персонала от соприкосновения с токоведущими или вращающимися частями, находящимися внутри машины, а также степень защиты самой машины от попадания в нее твердых посторонних тел; вторая цифра (от 0 до 8) — степень защиты машины от проникновения в нее воды

ТАБЛИЦА 1.3

Степень защиты обслуживающего персонала от соприкосновения с токоведущими и вращающимися частями электрических изделий и от попадания твердых тел внутрь корпуса

Первая цифра условного обозначения

Степень защиты

0

Специальная защита отсутствует

1

Защита от проникновения внутрь оболочки большого участка поверхности человеческого тела, например руки, и от проникновения твердых тел размером свыше 50 мм

2

Защита от проникновения внутрь оболочки пальцев или предметов длиной не более 80 мм и от проникновения твердых тел размеров свыше 12 мм

3

Защита от проникновения внутрь оболочки инструментов, проволоки и т. д. диаметром или толщиной более 2,5 мм и от проникновения твердых тел размером более 1 мм

4

Защита от проникновения внутрь оболочки проволоки и от проникновения твердых тел размером более 1 мм

5

Проникновение внутрь оболочки пыли не предотвращено полностью. Однако пыль не может проникать в количестве, достаточном для нарушения работы изделия

6

Проникновение пыли предотвращено полностью

ТАБЛИЦА 1.4

Степени защиты электротехнических изделий

От проникновения воды

Вторая цифра условного обозначения

Степень защиты

0

Специальная защита отсутствует

1

Защита от капель воды: капли воды, вертикально падающие на оболочку, не должны оказывать вредного воздействия на изделие

2

Защита от капель воды при наклоне оболочки до 150: капли воды, вертикально падающие на оболочку, не должны оказывать вредного воздействия на изделие при наклоне его оболочки на любой угол до 150 относительно нормального положения

3

Защита от дождя: дождь, падающий на оболочку под углом 600от вертикали, не должен оказывать вредного воздействия на изделие

4

Защита от брызг: вода, разбрызгиваемая на оболочку в любом направлении, не должна оказывать вредного воздействия на изделие

5

Защита от водяных струй: струя воды, выбрасываемая в любом направлении на оболочку, не должна оказывать вредного воздействия на изделие

6

Защита от волн воды: вода при волнении не должна попадать внутрь оболочки в количестве, достаточном для повреждения изделия

7

Защита при погружении в воду: вода не должна проникать в оболочку, погруженную в воду, при определенных условиях давления и времени в количестве, достаточном для повреждения изделия

8

Защита при длительном погружении в воду: изделия пригодны для длительного погружения в воду при условиях, установленных изготовителям

 Открытые машины, в конструкции которых не предусмотрено никаких мер для защиты, обозначаются IP00. Наиболее распространенными исполнениями по степени защиты являются IP22, IP23 и IP44. Первые два исполнения соответствуют защите от соприкосновения с токоведущими и вращающимися частями машины пальцев человека и твердых тел диаметром более 12 мм (первая цифра 2 в обозначениях), а также защите от попадания в них капель воды.

 Исполнение IP22 предусматривает защиту от проникновения внутрь машины капель, падающих под углом не более 150 к вертикали, а исполнение IP23 — под углом, не превышающим 600 к вертикали. Машины исполнений IP22 и IP23 называют каплезащищенными.

 Машины исполнения IP44 выполнены защищенными от возможности соприкосновения инструментов, проволоки или других подобных предметов, толщина которых не превышает 1 мм, с токоведущими частями, а также от попадания внутрь машины твердых тел диаметром более 1 мм (первая цифра 4). Вторая цифра 4 обозначает, что машина защищена от попадания внутрь корпуса водяных брызг любого направления. Такие машины называют также брызгозащищенными.

 Для специальных целей выпускают электрические машины с более высокой степенью защиты, например IP57. В этом исполнении машина защищена от попадания пыли внутрь корпуса и может работать, погруженной в воду.

 Исполнение по способу охлаждения электрических машин определяет ту или иную систему вентиляции, расположение вентилятора и систему забора охлаждающего воздуха. Машина исполнений IP22 и IP23 обычно выполняют с самовентиляцией и продувом воздуха через машину, при этом вентилятор располагается на валу машины, а воздух, проходя внутри корпуса, охлаждает обмотку и сердечники. Машины исполнения IP44 в большинстве случаев имеют наружный обдув. Охлаждающий воздух при этой системе охлаждения прогоняется вдоль наружной поверхности оребренного корпуса с помощью вентилятора, установленного вне корпуса на выступающем конце вала и с противоположной стороны от его выходного конца.

 Все эти электрические машины имеют много общего в конструкции обмоток, сердечников, валов, торцевых щитов, подшипниковых узлов и корпусов. Однако различия в требованиях, предъявляемых при эксплуатации, не позволяют создать полностью идентичные конструкции всех типов электрических машин, так же как и методов их расчета и проектирования. Каждый из типов машин (асинхронные, синхронные и машины постоянного тока) имеет свои особенности конструкции.

 Асинхронные двигатели выпускают двух типов: с роторами, имеющими фазную обмотку, и с короткозамкнутыми роторами. Более распространены двигатели с короткозамкнутыми роторами, так как отсутствие изоляции обмотки роторов и скользящих контактов делает их наиболее дешевыми в производстве и надежными в эксплуатации. Основным недостатком таких двигателей является отсутствие надежного и экономичного способа плавного регулирования частоты вращения.

 В настоящее время нашли применение вентильные двигатели, выполненные на базе асинхронных или синхронных двигателей с коммутаторами на тиристорах или транзисторах. Вентильные двигатели занимают среднее положение между двигателями постоянного тока и двигателями синхронными и асинхронными и применяются там, где необходимо изменять частоту вращения, а наличие коллектора и щеток нежелательно. Коммутатор, как правило, выполняется отдельно, а конструкция асинхронного или синхронного двигателя мало отличается от обычной.

 Асинхронные двигатели общего назначения выпускаются на низкое напряжение мощностью от 0,6 до нескольких сотен киловатт и на высокие напряжения (3,6 или 10 кВ) мощностью до нескольких десятков тысяч киловатт. Наиболее распространены низковольтные двигатели малой и средней мощности.

На рис. 1.4 показан асинхронный двигатель с короткозамкнутым ротором мощностью 15 кВт при 2р = 4 на напряжение 220/380 В. Конструктивная форма исполнения двигателя IМ1001, исполнение по степени защиты IР44. Такое исполнение характерно для большинства асинхронных машин мощностью менее 50…70 кВт. Низковольтные двигатели большей мощности с фазными и с короткозамкнутыми роторами выпускаются в большинстве случаев в двух исполнениях – IР23 и IР44.

Рис. 1.4. Асинхронный двигатель серии 4А

 в закрытом обдуваемом исполнении 4А160УЗ

На рис. 1.5 показан асинхронный двигатель серии 4А с фазным ротором мощностью 250 кВт при 2р = 4, исполнение по степени защиты IР23. Основной конструкцией асинхронных двигателей являются серии 4АМ и АИ, которые отличаются друг от друга выполнением корпуса и подшипниковых узлов. Активные части в этих сериях идентичны.

Рис. 1.5. Асинхронный двигатель

 с фазным ротором с квадратной станиной

 Синхронные машины общего назначения распространены значительно меньше, чем асинхронные. Синхронные генераторы сравнительно небольшой мощности (до нескольких тысяч киловатт) применяются в автономных установках. Синхронные двигатели не получили широкого распространения из-за более сложной конструкции, большей стоимости и худших пусковых характеристик. Они находят применение в приводах компрессоров, воздуходувок и т. п. Синхронные машины могут быть использованы одновременно и как двигатели, и как генераторы реактивной энергии, что дает им большое преимущество перед асинхронными двигателями, являющимися потребителями реактивной энергии.

 Синхронные машины в зависимости от конструкции ротора делятся на явно– и неявнополюсные. В явнополюсной конструкции более удобно располагать обмотку возбуждения, чем в пазах ротора с неявновыраженными полюсами. Поэтому все синхронные машины с числом пар полюсов более двух выполняются с явнополюсным ротором. В двухполюсных машинах из-за большой частоты вращения центробежные силы, действующие на ротор, настолько велики, что не удается надежно закрепить на нем явно выраженные полюсы с обмоткой. Обмотку возбуждения приходится укладывать в отдельные пазы, рассредоточивая их по окружности ротора. Синхронные машины общего назначения выполняют, в основном, с явнополюсными роторами.

На рис. 1.6 показан синхронный двигатель мощностью 17500 кВт на частоту вращения 375 об/мин. Из-за большой массы вала и ротора его подшипниковые узлы установлены на подшипниковых стойках вне корпуса машины.

Рис. 1.6. Синхронный двигатель

 Наряду с крупными синхронными машинами выпускают синхронные двигатели и генераторы мощностью менее 100 кВт на низкое напряжение. Для упрощения эксплуатации и повышения надежности они выполнятся с самовозбуждением (обмотка возбуждения питается постоянным током от выводов статора через выпрямитель). В настоящее время разработаны конструкции синхронных машин, в которых отсутствует скользящий контакт, при этом выпрямительные элементы установлены на роторе, а ток в обмотке возбуждения возникает за счет высших гармоник поля или с помощью бесконтактного возбудителя.

 Двигатели постоянного тока допускают плавное регулирование частоты вращения в широком диапазоне, обладают высокими пусковыми и перегрузочными моментами. Это определило их распространение в приводах, требующих изменения частоты вращения или специальных скоростных характеристик: в станкостроении, электротранспорте, в металлургической, текстильной и полиграфической промышленностях, других отраслях народного хозяйства.

 Генераторы постоянного тока применяют для питания обмоток возбуждения синхронных машин, в системах генератор—двигатель и в некоторых специальных производствах, как, например, в химической промышленности для целей электролиза и т. п.

 В то же время машины постоянного тока не получили такого широкого распространения, как асинхронные, из-за меньшей надежности, сложности эксплуатации и большей стоимости, обусловленных наличием в их конструкции механического преобразователя частоты коллектора. Эти машины могут иметь различные конструкции коллектора, якоря, обмоток и полюсов. Машина постоянного тока общего назначения, проектирование которых рассмотрено в последующих главах, имеют вращающийся якоря, цилиндрический коллектор и неподвижные полюсы с обмотками возбуждения, расположенными на станине.

На рис. 1.7 показан двигатель постоянного тока мощностью 110 кВт и номинальной частотой вращения 1500 об/мин, исполнения по степени защиты IP22. Такое исполнение является типичным для двигателей постоянного тока общего назначения, так как они большей частью устанавливаются, в которых исключается попадание на машины капель, падающих под углом более 150 к вертикали.

Рис. 1.7. Продольный и поперечный разрезы

 двигателя постоянного тока серии 4ПО

1 — корпус;

2   — магнитопровод статора; 

3 — щит подшипниковый передний;

3   — сердечник якоря;

4   — вентилятор;

5   — кожух; 

7 — коробка выводов;

8 — коллектор;

 9 — токосъемный аппарат

 С каждым годом в конструкцию серий машин переменного и постоянного тока вводится все большая унификация, различные узлы и детали машин стремятся делать одинаковыми. В то же время применение гибких автоматизированных производств позволяет выполнять большее число модификаций на основе базовой модели.

 В последние десятилетия проявляется тенденция к объединению электрических машин с управляющими силовыми полупроводниковыми элементами и микропроцессорами. При этом вентильные двигатели наряду с асинхронными двигателями и двигателями постоянного тока находят все большее применение. Создание серий электромеханических систем для широкого класса электроприводов внесет новые изменения в конструкцию электрических машин.

                                         Практическая часть

1.   Расчет отдельной машины и серии машин

 Электрические машины концентрируют энергию магнитного поля в воздушном зазоре. Объем активной части — пространство, в котором размещены сердечники и пазовые части обмоток, определяется произведением   (1.1).

Размеры   и   называются главными размерами машины.

Расчетная мощность машины:

  ,   (1.2)

где   и   — соответственно номинальный ток и ЭДС обмотки статора для асинхронных и синхронных машин, а для машин постоянного тока — номинальный ток и ЭДС якоря;   — число фаз для машин переменного тока (для машин постоянного тока  =1).

Отношение:

  (1.3)

определяет удельную мощность машины, т. е. мощность на единицу активной части. Удельная мощность характеризует степень использования материалов активной части и является важным показателем для сравнения машин различной мощности и конструктивного исполнения.

 Более общим критерием оптимизации является отношение момента, развиваемого машиной, к объему ее активной части, которое называют коэффициентом использования

  .   (1.4)

Здесь   — угловая скорость ротора, а   — момент на валу машины, нм;   — диаметр (внутренний или внешний), см;   — расчетная длина машины, см.

Эффективность использования объема активной части машины определяется электромагнитными нагрузками, линейной нагрузкой   и индукцией в воздушном зазоре  . Линейная нагрузка определяется отношением тока всех витков обмотки к длине окружности. Ее значение показывает, какой ток приходится в среднем на единицу длины окружности зазора машины. Индукция в воздушном зазоре при данных диаметре по зазору и числе полюсов определяет поток машины и, следовательно, уровень индукции в участках магнитопровода.

 Чем больше   и  , тем больше коэффициент использования объема активной части  ~  . Однако с ростом мощности машины   увеличивается. Это объясняется тем, что с увеличением объема активной части площадь, с которой отводится тепло, увеличивается быстрее, чем объем машины. Если объем машины пропорционален линейному размеру в третьей степени, то поверхность этого объема пропорциональна линейному размеру в четвертой степени.

 Лучшие условия охлаждения в машинах большой мощности позволяют выбирать большие   и  , что обеспечивает лучшее использование материалов. Поэтому машинная постоянная   остается «постоянной» лишь в определенном диапазоне мощностей. С повышением мощности растет и  .

 Наибольшие допустимые уровни электромагнитных нагрузок для конкретных машин определяются допустимым нагревом активных частей, так как с ростом   и   увеличиваются потери в единице активного объема машины. На основании опыта проектирования и эксплуатации электрических машин выработаны определенные диапазоны возможных значений   и   для различных типоразмеров машин, при которых нагрев их активных частей не превышает допустимого для принятого класса изоляции обмоток. Значения электромагнитных нагрузок задаются в виде рекомендаций в соответствующих расчетов методиках и служат основной для правильного выбора объема активной части. С развитием теории и практики электромашиностроения коэффициент использования объема активной части машин повышается.

 Переход на более нагревостойкую изоляцию позволяет рассчитать машины на большие превышения температуры обмоток, что дает возможность при той же мощности уменьшить габариты машины.

 То же самое происходит, если в машине применена более совершенная система охлаждения — водородная, жидкостная, форсированные системы или внутреннее охлаждение. В этих случаях при том же превышении температуры способность рассеивать тепло также возрастает, и объем активной части машины может быть уменьшен.       

Однако при слишком больших нагрузках значительно снижаются КПД и  .

 Использование новых сортов электротехнических сталей с лучшими магнитными свойствами и меньшими удельными потерями и новых электроизоляционных материалов, позволяющих уменьшить толщину изоляции и за счет этого снизить плотность тока в обмотках, приводит к уменьшению потерь и необходимого объема активной части.

 Поиски новых конструктивных решений, применение вычислительных машин, новых методов оптимизации, обобщение опыта проектирующих организаций позволяют создавать электрические машины с лучшими энергетическими характеристиками и меньшей массой.

 За счет применения новых электроизоляционных и магнитных материалов, совершенствования конструкции и систем охлаждения, развития теории и применения ЭВМ удалось снизить массу электротехнических машин общего назначения в 2-3 раза (см. рис. 1.1).

 При проектировании новых машин и, в частности, при выполнении учебных проектов необходимо ориентироваться на современное конструктивное исполнение электрических машин, предусматривать применение новых электротехнических материалов.

 Ориентируясь на рекомендованные в методиках значения электромагнитных нагрузок и используя выражение для машинной постоянной, можно достаточно точно найти объем активной части проектируемой машины  , при котором ее превышение температуры будет соответствовать допустимому. Однако этот объем может быть получен при различных сочетаниях значений   и  . Аналитических зависимостей, однозначно определяющих эти величины для конкретных машин, не существует. В практике проектирования предварительно определяют диаметр  . Для этой цели обычно используют кривые, характеризующие среднюю зависимость   для большого числа построенных и эксплуатируемых машин данного типа (где   — мощность машины). После этого с учетом выбранных электромагнитных нагрузок определяют  , исходя из машинной постоянной.

 Проверкой правильности выбора   является значение отношения   или более часто принятое в практике отношение  , где полюсное деление  . Число полюсов обычно известно или определяется из технического задания.

 Значение   характеризует основные размерные соотношения в машине. Большие   имеют машины относительно малого диаметра и большой длины, и, наоборот, малые значения   — короткие машины с большим диаметром. В первом случае машины имеют меньшую массу и меньшую высоту оси вращения. В них лучше используется медь, так как длина лобовых частей катушек по сравнению с длиной их пазовых частей становится меньше. Момент инерции машин меньше при больших  , чем при малых  , что особенно важно при проектировании двигателей, предназначенных для работы с частыми пусками.

 Однако относительное увеличение длины машины при больших   затрудняет условия их охлаждения, а в машинах постоянного тока приводит к ухудшению коммутации. В машинах небольших габаритов с увеличением   возникают трудности с выполнением необходимого для нормальной работы числа пазов.

 Анализ этих зависимостей и опыт эксплуатации позволили определить для различных типов машин диапазон значений  , при которых обеспечиваются их экономичность и хорошие эксплуатационные данные. Эти рекомендации служат критерием проверки правильности предварительного выбора   для проектируемой машины. Конкретные диапазоны возможных   для различных типов машин приведены в соответствующих главах книги.

 При проектировании индивидуальной машины необходимо по возможности использовать имеющиеся на заводе штампы, модели, шаблоны и т. п. и так выбирать размеры, чтобы, максимально использовать существующие узлы и детали.

 В индивидуальном исполнении проектируют только машины для специальных применений. Обычно электрические машины выпускают сериями. Серия — ряд машин возрастающей мощности, имеющих одну конструкцию и единую технологию производства на больших участках серии и предназначенных для массового производства. При проектировании серий машин важнейшее значение имеют вопросы унификации деталей, конструктивных узлов и нормализации ряда размеров. Все это связано с рациональной организацией производства как внутри завода, так и в объединении, выпускающем единую серию машин. При этом необходимо заботится об экономической эффективности целой серии машин, а не одной машины.

 При проектировании серий асинхронных машин выбирают внешние диаметры статора таким образом, чтобы при одном и том же диаметре при изменении длины машины получить несколько машин на различные мощности и частоты вращения. Для машин постоянного тока выбирают одинаковым диаметр якоря и, изменяя длину машины, проектируют на нем несколько машин различной мощности и на разные частоты вращения.

 Такое построение серий приводит к сокращению количества штампов, уменьшению количества моделей для отливки станин и подшипниковых щитов, сохранению одних и тех же диаметров валов, унификации подшипниковых щитов, сокращению количества оснастки и измерительного инструмента. Широкая унификация облегчает применение гибких автоматизированных производств, облегчает кооперацию между заводами.

 Проблема создания единых отечественных серий электрических машин возникла в конце 20-х г., когда машины выпускались по иностранным чертежам. Начало работ по созданию единой серии асинхронных двигателей заводом «Электросила» и Харьковским электромашиностроительным заводом (ХЭМЗ) относится к 1928—1929 гг. «Электросила» разработала серии АД мощностью 1…10 кВт и АМ — свыше 100 кВт. ХЭМЗ разработал серию МА-200 мощностью до 100 кВт.

 В 1943 г. Баранчинский электромашиностроительный завод выпустил серию «Урал» мощностью 1…13 кВт, заменившую серию АД.

 Первая единая всесоюзная серия асинхронных двигателей А (с короткозамкнутым роторам) и АК (с фазным ротором) появилась в 1952—1956 гг. Серия имела твердую шкалу мощностей и высокую степень унификации.

 В 1964—1968 гг. ЦПКТБ крупных электрических машин (г. Ленинград), московский завод им. Владимира Ильича (ЗВИ) и Баранчинский электромеханический завод разработали серию А2 мощностью свыше 100 кВт, в которой уровень использования активных материалов был повышен на 20…25% по сравнению с ранее выпускавшимися сериями.

 В начале 90-х гг. в странах СЭВ (ГДР, ЧССР, НРБ) и СССР была создана серия 4А, включавшая двигатели до 400 кВт. В серии 4А за счет применения новых электротехнических материалов и рациональной конструкции мощность двигателей при тех же высотах оси вращения была повышена на 2—3 ступени.

 В 80-х гг. организацией социалистических стран Интерэлектро была разработана серия АИ. Асинхронные двигатели серии АИ при диапазонах мощности 0,25…315 кВт на 18 высотах оси вращения 45…355 мм обладали высокими энергетическими показателями, повышенной надежностью и низким уровнем шума.

 На базе единых серий изготовляются двигатели различных исполнений, предназначенные для работы в специальных условиях. Так, на базе серии 5А и РА выпускаются следующие электрические модификации: с повышенным пусковым моментом, с повышенным скольжением, 10-полюсные и 12-полюсные, многоскоростные, на частоту сети 60 Гц, однофазные, с фазным ротором и другие, специализированные по таким конструкциям: встраиваемые, с встроенным электромагнитным тормозом, малошумные, с встроенной температурой защиты, с повышенной точностью по установочным размерам, высокоточные; специализированные по следующим условиям окружающей среды: влагоморозостойкие, химостойкие, тропические; узкоспециализированного исполнения: для сельского хозяйства, для судов морского флота, для холодного климата, лифтовые, фреономаслостойкие, полиграфические, швейные и др.

 Непрерывно возрастающие требования к современным системам электропривода могут быть удовлетворены только при применении регулируемых электродвигателей переменного тока, работающих с преобразователями частоты, и, прежде всего, двигателей постоянного тока.

 Первой общесоюзной серией машин постоянного тока с нормализованной шкалой номинальных мощностей и частот вращения была серия П, созданная в 1956 г.

 В 1974 г. в серии 2П впервые были применены установочно-присоединительные размеры двигателей, увязанные с номинальной мощностью, в соответствии с рекомендациями Международной электротехнической комиссии (МЭК). По сравнению с серией П в двигателях серии 2П при одной и той же высоте оси вращения увеличена в 3—5 раз, а диапазон регулирования — в 1,6 раза.

 Стремление удовлетворить потребность в широко регулируемых двигателях для гибких автоматизированных систем и робототехники привело к созданию в 1984 г. двигателей серии 4П. В двигателях этой серии применены компенсационная обмотка, шихтованный магнитопровод, квадратная станина, изоляция класса нагревостойкости F и форсированное охлаждение.

 За счет улучшения конструкции, форсированного охлаждения и применения изоляционных материалов, допускающих более высокие превышения температуры, удалось в течение 50 лет снизить расход материалов в 3 раза (рис. 1.2).

Рис. 1.2. Снижение массы двигателей постоянного тока:

1 —станина круглая; 2 — станина квадратная, улучшенная вентиляция;

3 — форсированное охлаждение

 В серии 4П проведена унификация по деталям, сборочным единицам и в целом конструкции машин постоянного тока с асинхронными двигателями серий 4А и АИ. Это позволяет обеспечить дальнейшую кооперацию производства двигателей и снизить их себестоимость.

 Многочисленные конструкции асинхронных и синхронных машин представлены в гл. 8 и 9.

2.   Расчет электродвигателя

2.1.     Расчет мощности двигателя производится по следующей формуле:

                                                        P=√3UIcosφη

где:

U — Номинальное напряжение (напряжение на которое подключается электродвигатель);

I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);

cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2.2.     Расчет номинального тока двигателя производится по следующей формуле:

                                              Iном=P/√3Ucosφη

где:

P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);

U — Номинальное напряжение (напряжение на которое подключается электродвигатель);

cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2.3.    Расчет номинального тока двигателя производится по следующей формуле:

                                          Iном=P/√3Ucosφη

где:

P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);

U — Номинальное напряжение (напряжение на которое подключается электродвигатель);

cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2.4.    Расчет номинального тока двигателя производится по следующей формуле:

                                             Iном=P/√3Ucosφη

где:

P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);

U — Номинальное напряжение (напряжение на которое подключается электродвигатель);

cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2.5.    Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

                                         η=P/√3UIcosφ

 где:

P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);

U — Номинальное напряжение (напряжение на которое подключается электродвигатель);

I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);

cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

ЗАКЛЮЧЕНИЕ:

В процессе выполнения курсового проекта мы выяснили , что электрические машины применяют во всех отраслях промышленности , их выпуск выполняется большими сериями , проектирование электрических машин требует глубоких знаний и высокого профессионального мастерства ,  конструктивные формы исполнения электрических машин определяются степенью защиты , а степень защиты в свою очередь , регламентируется ГОСТОМ. Также рассмотели расчет отдельной машины и серии машин и расчет электродвигателя.

Выполнили чертёж асинхронного электродвигателя 4А112М4

Список литературы:

1.Справочник по электрическим машинам (Том 1 )

 (Копылов И.П , Клоков Б.К)

2.Справочник по электрическим машинам (Том 2 )

(Копылов И.П , Клоков Б.К)

3.Studfile.net

4. Elektricheskie-mashiny.com

5. Studopedia.net

Информация о файле
Название файла Конструктивные формы исполнения электрических машин от пользователя Гость
Дата добавления 17.5.2020, 17:09
Дата обновления 17.5.2020, 17:09
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 309 килобайт (Примерное время скачивания)
Просмотров 766
Скачиваний 66
Оценить файл