Высшая математика

Описание:
Тип работы: шпаргалка
Основные теоремы и определения.
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Высшая математика

Основные теоремы и определения

Определение. Сумма членов бесконечной числовой последовательности  называется числовым рядом.

При этом числа  будем называть членами ряда, а un – общим членом ряда.

Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

Определение. Ряд  называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда  и , где С – постоянное число.

Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ¹ 0)

3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды и сходятся и их суммы равны соответственно S и s, то ряд  тоже сходится и его сумма равна S + s.

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого  существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

1.3 Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке [a,b].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :

т.е. имеет место неравенство:

.

Еще говорят, что в этом случае функциональный ряд  мажорируется числовым рядом .

ряд  называется положительным, если Un≥0, для всех n ? N

Интегральный признак Коши.

Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … =  и несобственный интеграл  одинаковы в смысле сходимости.

Пример. Ряд  сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл  сходится при a>1 и расходится a£1. Ряд  называется общегармоническим рядом.

Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и  то интегралы  и  ведут себя одинаково в смысле сходимости.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при и расходится при .

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:  ряд сходится по признаку Лейбница (см. Признак Лейбница. ).

При х = -1:  ряд расходится (гармонический ряд).

1 теорема Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд  сходится при x = x1 , то он сходится и притом абсолютно для всех .

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k- некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд  сходится, а значит ряд  сходится абсолютно.

Таким образом, если степенной ряд сходится в точке х1, то он абсолютно сходится в любой точке интервала длины 2 с центром в точке х = 0.

Следствие. Если при х = х1 ряд расходится, то он расходится для всех .

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что  ряд абсолютно сходится, а при всех ряд расходится. При этом число R называется радиусом сходимости. Интервал (-R, R) называется интервалом сходимости.

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Определение. Тригонометрическим рядом называется ряд вида:

или, короче,

Действительные числа ai, bi называются коэффициентами тригонометрического ряда.

Определение. Тригонометрическим рядом называется ряд вида:

или, короче,

3,3

2 Теорема Абеля. Если степенной ряд  сходится для положительного значения х=х1 , то он сходится равномерно в любом промежутке внутри .

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда  и  при un, vn ³ 0.

Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

Доказательство. Обозначим через Sn и sn частные суммы рядов  и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд  расходится, то расходится и ряд .

Пример. Исследовать на сходимость ряд

Т.к. , а ряд  сходится ( как убывающая геометрическая прогрессия), то ряд  тоже сходится.

Также используется следующий признак сходимости:

Теорема. Если  и существует предел , где h – число, отличное от нуля, то ряды  и ведут одинаково в смысле сходимости.

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Возможны различные способы разложения функции в степенной ряд. Такие способы как разложение при помощи рядов Тейлора и Маклорена были рассмотрены ранее. (См. Формула Тейлора. )

Существует также способ разложения в степенной ряд при помощи алгебраического деления. Это – самый простой способ разложения, однако, пригоден он только для разложения в ряд алгебраических дробей

Рассмотрим способ разложения функции в ряд при помощи интегрирования.

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

Находим дифференциал функции  и интегрируем его в пределах от 0 до х.

2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.

3) Теорема о почленном дифференцировании ряда.

Если члены ряда  сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

На практике часто применяется разложение функций в степенной ряд.

Ряд Тейлора.

(Пьер Альфонс Лоран (1813 – 1854) – французский математик)

Функция f(z), аналитическая в круге , разлагается в сходящийся к ней степенной ряд по степеням (z – z0).

Коэффициенты ряда вычисляются по формулам:

Степенной ряд с коэффициентами такого вида называется рядом Тейлора.

Правая часть линейного неоднородного дифференциального уравнения имеет вид:

 

где - многочлен степени m.

Тогда частное решение ищется в виде:

 

Здесь Q(x)- многочлен той же степени, что и P(x), но с неопределенными коэффициентами, а r – число, показывающее сколько раз число a является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения.

Правая часть линейного неоднородного дифференциального уравнения имеет вид:

 

Здесь Р1(х) и Р2(х) – многочлены степени m1 и m2 соответственно.

Тогда частное решение неоднородного уравнения будет иметь вид:

 

где число r показывает сколько раз число  является корнем характеристического уравнения для соответствующего однородного уравнения, а Q1(x) и Q2(x) – многочлены степени не выше m, где m- большая из степеней m1 и m2.

Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию.

Т.е. если уравнение имеет вид: , то частное решение этого уравнения будет где у1 и у2 – частные решения вспомогательных уравнений

 и

Предельный признак Даламбера.

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Если существует предел , то при r < 1 ряд сходится, а при r > 1 – расходится. Если r = 1, то на вопрос о сходимости ответить нельзя.

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда

Вывод: ряд сходится.

Нормальные системы обыкновенных дифференциальных уравнений.

Определение. Совокупность соотношений вида:

где х- независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.

Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.

Такая система имеет вид:

  (1)

Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.

Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции   …  непрерывны и имеют непрерывные частные производные по , то для любой точки  этой области существует единственное решение

системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям

Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество

Ряды с неотрицательными членами.

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда  и  при un, vn ³ 0.

Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

Доказательство. Обозначим через Sn и sn частные суммы рядов  и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

Также используется следующий признак сходимости:

Теорема. Если  и существует предел , где h – число, отличное от нуля, то ряды  и ведут одинаково в смысле сходимости.

Признак Коши. (радикальный признак)

Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

,

то ряд сходится, если же для всех достаточно больших n выполняется неравенство

то ряд расходится.

Следствие. Если существует предел , то при r<1 ряд сходится, а при r>1 ряд расходится.

Интегральный признак Коши.

Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … =  и несобственный интеграл  одинаковы в смысле сходимости.

Пример. Ряд  сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл  сходится при a>1 и расходится a£1. Ряд  называется общегармоническим рядом.

Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и  то интегралы  и  ведут себя одинаково в смысле сходимости.

Знакочередующиеся ряды.

Знакочередующийся ряд можно записать в виде:

где

Признак Лейбница.

Если у знакочередующегося ряда  абсолютные величины ui убывают  и общий член стремится к нулю , то ряд сходится.

Признаки Даламбера и Коши для знакопеременных рядов.

Пусть - знакопеременный ряд.

Признак Даламбера. Если существует предел , то при r<1 ряд  будет абсолютно сходящимся, а при r>1 ряд будет расходящимся. При r=1 признак не дает ответа о сходимости ряда.

Признак Коши. Если существует предел , то при r<1 ряд  будет абсолютно сходящимся, а при r>1 ряд будет расходящимся. При r=1 признак не дает ответа о сходимости ряда.

Пример. Разложить в ряд функцию

при помощи интегрирования.

При  получаем по приведенной выше формуле:

Разложение в ряд функции  может быть легко найдено способом алгебраического деления аналогично рассмотренному выше примеру.

Тогда получаем:

Окончательно получим:

Абсолютная и условная сходимость рядов.

Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).

  (1)

и ряд, составленный из абсолютных величин членов ряда (1):

  (2)

Теорема. Из сходимости ряда (2) следует сходимость ряда (1).

Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого e>0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство:

По свойству абсолютных величин:

То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).

Определение. Ряд называется абсолютно сходящимся, если сходится ряд .

Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.

Определение. Ряд называется условно сходящимся, если он сходится, а ряд  расходится.

Свойства абсолютно сходящихся рядов.

1) Теорема. Для абсолютной сходимости ряда необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами.

Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.

2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.

3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.

Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда.

5) Если ряды и  сходятся абсолютно и их суммы равны соответственно S и s, то ряд, составленный из всех произведений вида  взятых в каком угодно порядке, также сходится абсолютно и его сумма равна S×s - произведению сумм перемножаемых рядов.

Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.

Тригонометрический ряд.

Определение. Тригонометрическим рядом называется ряд вида:

или, короче,

Действительные числа ai, bi называются коэффициентами тригонометрического ряда.

Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2p, т.к. функции sinnx и cosnx также периодические функции с периодом 2p.

Пусть тригонометрический ряд равномерно сходится на отрезке [-p; p], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).

Определим коэффициенты этого ряда.

Для решения этой задачи воспользуемся следующими равенствами:

Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. Интегрирование тригонометрических функций.

Т.к. функция f(x) непрерывна на отрезке [-p; p], то существует интеграл

Такой результат получается в результате того, что .

Получаем:

Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от -p до p.

Отсюда получаем:

Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от -p до p.

Получаем:

Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an.

 Таким образом, если функция f(x) – любая периодическая функция периода 2p, непрерывная на отрезке [-p; p] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты

существуют и называются коэффициентами Фурье для функции f(x).

Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.

Функциональные ряды.

Определение. Частными (частичными) суммами функционального ряда  называются функции

Определение. Функциональный ряд называется сходящимся в точке (х=х0), если в этой точке сходится последовательность его частных сумм. Предел последовательности  называется суммой ряда  в точке х0.

Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимости ряда.

Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке [a,b].

Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.

Достаточные признаки разложимости в ряд Фурье.

Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2p и на отрезке

[-p;p] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок

[-p;p] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).

Функция f(x), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [-p;p].

Теорема. Если функция f(x) имеет период 2p, кроме того, f(x) и ее производная f^(x) – непрерывные функции на отрезке [-p;p] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях х, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна . При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).

Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкой на отрезке [-p;p].

Разложение в ряд Фурье непериодической функции.

Задача разложения непериодической функции в ряд Фурье в принципе не отличается от разложения в ряд Фурье периодической функции.

Допустим, функция f(x) задана на отрезке [a, b] и является на этом отрезке кусочно – монотонной. Рассмотрим произвольную периодическую кусочно – монотонную функцию f1(x) c периодом 2Т ³ ïb-aï, совпадающую с функцией f(x) на отрезке [a, b].

 y

 f(x)

 a - 2T a a b a+2T a + 4T x

Таким образом, функция f(x) была дополнена. Теперь функция f1(x) разлагается в ряд Фурье. Сумма этого ряда во всех точках отрезка [a, b] совпадает с функцией f(x), т.е. можно считать, что функция f(x) разложена в ряд Фурье на отрезке [a, b].

Таким образом, если функция f(x) задана на отрезке, равном 2p ничем не отличается от разложения в ряд периодической функции. Если же отрезок, на котором задана функция, меньше, чем 2p, то функция продолжается на интервал (b, a + 2p) так, что условия разложимости в ряд Фурье сохранялись.

Вообще говоря, в этом случае продолжение заданной функции на отрезок (интервал) длиной 2p может быть произведено бесконечным количеством способов, поэтому суммы получившихся рядов будут различны, но они будут совпадать с заданной функцией f(x) на отрезке [a,b]

Свойства равномерно сходящихся рядов.

1) Теорема о непрерывности суммы ряда.

Если члены ряда  - непрерывные на отрезке [a,b] функции и ряд сходится равномерно, то и его сумма S(x) есть непрерывная функция на отрезке [a,b].

2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.

3) Теорема о почленном дифференцировании ряда.

Если члены ряда  сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

На практике часто применяется разложение функций в степенной ряд

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :

т.е. имеет место неравенство:

.

Еще говорят, что в этом случае функциональный ряд  мажорируется числовым рядом

Ряды Фурье для функций любого периода.

Ряд Фурье для функции f(x) периода Т = 2l, непрерывной или имеющей конечное число точек разрыва первого рода на отрезке [-l, l] имеет вид:

Для четной функции произвольного периода разложение в ряд Фурье имеет вид:

Для нечетной функции:

Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2p и на отрезке

[-p;p] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок

[-p;p] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.shpora-zon.narod.ru/


Информация о файле
Название файла Высшая математика от пользователя z3rg
Дата добавления 15.4.2009, 8:18
Дата обновления 15.4.2009, 8:18
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 118.8 килобайт (Примерное время скачивания)
Просмотров 1840
Скачиваний 0
Оценить файл