IPB

Здравствуйте, гость ( Вход | Регистрация )

Поиск по файловому архиву
  Add File

> Статистические методы оценки прочности пластмасс

Информация о файле
Название файла Статистические методы оценки прочности пластмасс от пользователя z3rg
Дата добавления 7.1.2012, 19:59
Дата обновления 7.1.2012, 19:59
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 16,89 килобайт (Примерное время скачивания)
Просмотров 724
Скачиваний 68
Оценить файл

Описание работы:


Тип работы: реферат
Статистические характеристики пластмасс. Оценка прочности пластмасс с помощью вероятности разрушения по Серенсену. Статистическая оценка прочности пластмасс по нагрузкам. Оценка эксплуатационных свойств по критерию эффективной удельной прочности.
Скачать бесплатно Статистические методы оценки прочности пластмасс
Загрузить Статистические методы оценки прочности пластмасс
Реклама от Google
Доступные действия

Введите защитный код для скачивания файла и нажмите "Скачать файл"

Защитный код
Введите защитный код

Текст работы:


Введение

Тема реферата «Статистические методы оценки прочности пластмасс».

Прочность пластических масс и изделий из них определяется максимальной нагрузкой или максимальным напряжением, которые образец или изделие могут выдержать без разрушения. Прочность зависит от вида пластмассы и определяется путем специальных физико-механических испытаний. Однако в отличие от традиционных конструкционных материалов испытания пластмасс дают дополнительный разброс показателей. Он объясняется суще6ствованием двух видов погрешностей: 1) систематических и 2) случайных. Систематические погрешности можно выделить и учесть при оценке прочности, так как их существование связано с малой точностью используемых методик и приборов. Случайные погрешности учесть очень трудно, так как нельзя предусмотреть заранее, в каком месте образца или изделия появится слабое место. Случайные погрешности возникают вследствие нерегулярного строения, неоднородности, наличия ослабленных мест и дефектов в структуре. Такие ослабления вызывают неравномерность распределения напряжений, концентрацию напряжений на микродефектах, что ведет к возникновению очага разрушения и последующему разрыву.

Случайные погрешности учитываются с помощью закономерностей теории вероятности. Экспериментальные данные принимают как случайные величины, т.е. такие величины, которые могут принимать те или иные значения в зависимости от причин, не учитываемых заранее. Для оценки ряда результатов испытаний одного и того же материала используется статистическая обработка данных. Полученные статистические характеристики позволяют сделать правильное суждение о полученных данных.


1. Статистические характеристики

1)  Среднее арифметическое значение случайной величины:

x = (x1+x2+x3+۰۰۰+xn) = (Σ xi) / n,

где    n – количество наблюдений в выборке.

2)  Эмпирическое среднеквадратическое отклонение:

Sn = √ Σ(xi – x)2 / (n-1)

Берется только положительное значение.

3)  Дисперсия:

Dn = Sn2 = Σ(xi – x)2 / (n-1)

Если n > 50, то (n-1) можно заменить на n.

4)  Доверительный интервал:

 x – x ‌ ≤ Sn / √n ∙tα(n),

где х – среднее значение величины для бесконечно большого числа измерений (генеральной совокупности);

tα(n) – коэффициент Стьюдента, значения которого выбираются из таблиц в зависимости от числа наблюдений n и доверительной вероятности α.

5)  Коэффициент вариации:

νх = Sn /х · 100% или νх = Sn


2. Оценка прочности пластмасс с помощью вероятности разрушения по Серенсену

Основными условиями обеспечения прочности любого материала являются:

По напряжениям                   n = σразmax экв ≥ [n]

По нагрузкам               n = R/Q ≥ [n],

где    n – запас прочности;

σраз – разрушающее напряжение;

σmaxэкв – максимальное эквивалентное действующее напряжение;

R – разрушающая нагрузка;

Q – действующая нагрузка;

[n] – допускаемый запас прочности.

В основе оценки лежат:

1) статистическая природа прочности пластмассы;

2) возможность вероятностного распределения действующих нагрузок и напряжений.

Это позволяет построить графики плотностей вероятности распределения Р(х) по действующему напряжению σ и пределу прочности σв. При этом запас статистической прочности будет равен:

n = σв / σmax.

Считаем, что σв и σmax известны. В точке А кривые распределения нагружающих и разрушающих напряжений пересекаются и, если одновременно σ > σА и σв < σА, возможно разрушение.

Вероятность разрушения по Серенсену в предположении независимости событий:


Рраз = Р (σ > σА)·Р(σв < σА) = S,

где    S – площадь заштрихованного участка.

Вероятность того, что случайная величина σА будет меньше заданного значения σ, равна:

Р (σ > σА) = ½ + Ф[(σА – σ) / Sд],

где    Ф – табулированная функция Лапласа;

Sд – среднее квадратическое отклонение действующего напряжения.

Табулированная функция Лапласа равна:

 

2

Ф[(σА – σ)·/Sд] = 1/√2π · ∫е-1/2 ξ ·dξ

где    ξ = (σАср) / Sд; dξ = dσА / Sд

Вероятность того, что случайная величина σА будет больше заданного значения σв, равна:

Р(σв < σА) = ½ – Ф[(σА – σв ср) / Sв],

где    Sв – среднее квадратическое отклонение разрушающего напряжения.

В предположении того, что закон распределения случайных величин нормальный, можно записать:

Рраз = {½ + Ф[(σА – σ)/Sд]}· {½ – Ф[(σА – σв ср)/Sв]}


Плотность распределения при нормальном законе распределения равна:

 

2 2

Р(х) = 1/(S·√2π)· e – (x-xср) /2S

Для точки А величина σ может быть найдена из равенства:

 

2 2 2 2

1/Sд·e-(σА-σср) / 2Sд = 1/Sв·e-(σА-σвср) / 2Sв

или Zд2 – Zв2 = -2 ln(Sд/Sв),

где    Zд = (σАср) / Sд; Zв = (σАвср) / Sв.

Величины Zд и Zв называются нормированными отклонениями.

Последнее уравнение решается относительно σА. Затем определяется Рраз, представляющее условную величину. Эта величина должна сопоставляться с известными предельными значениями, которые устанавливаются экспериментально на основе опыта эксплуатации подобных конструкций.

Через Рраз можно найти коэффициент надежности Н:

Н = lg (1/Pраз)

Рраз = 1 – Рнер; Рнер = 1 – Рраз

При вероятности неразрушения Рнер, равной 0,9; 0,99; 0,999; 0,9999, соответственно Н равно 1; 2; 3; 4.


3. Статистическая оценка прочности пластмасс по нагрузкам

 

Тимофеев Е.И. показал, что из-за недостаточной однородности и стабильности механических свойств пластмасс расчет по средним значениям нагрузок следует вести с учетом вероятности снижения прочности вследствие релаксации и неоднородности.

Изделие считается прочным, если действующая нагрузка Q меньше разрушающей R:

R – Q > 0

Вероятность такого события определяет надежность изделия:

α = Вер [(R – Q) > 0]

Обозначим разность нагрузок через Х:

Х= R – Q

Тогда, с учетом того, что Х подчиняется нормальному закону распределения с плотностью Р(Х), среднее значение Х равно:

Х0 = R0 – Q0

Стандартное отклонение:

Sx = √ SR2 + SQ2

Надежность:


2 2

α = Вер (Х > 0) = P(X)·dX = 1/(S·√2π)·∫e-1/2·((x-xср) / Sx ) ·dx

С учетом нормированной функции Лапласа:

α = Ф(У),

где    У = X0 / Sx (У берется из таблиц в зависимости от заданной вероятности).

После подстановки уравнений и деления числителя и знаменателя на Q0 получим:

У = (R0/Q0 – 1) / √SR2 / Q02 + SQ2 / Q02

Введем обозначения:

n0 = R0 / Q0 – средний наиболее вероятный запас прочности;

νR = SR / R0; νQ = SQ / Q0 – коэффициенты вариации разрушающей и действующей нагрузок.

Тогда:

У = (n0 –1)/√ n02·νR2 + νQ2

Для трубы при r >> h, где r – радиус, а h – толщина стенки, принимают:

νR = √ νв2 + νh2

 

Пользуясь специальными таблицами для Ф(У), после вычисления функции У можно определить запас прочности по средним значениям нагрузок или надежность по выбранному среднему коэффициенту запаса прочности. Определение функции У позволяет также исследовать влияние на надежность величины статистического разброса разрушающих и действующих нагрузок.

Статистические методы позволяют дать оценку влияния на надежность пластмассовых изделий температур, агрессивных сред, усталости, климатических факторов и т.д.

Например, по экспериментальным данным нагрев до 60 0С приводит к снижению предела прочности при растяжении для стеклотекстолита КАСТ-В на 10%, пресс-материала АГ-4С – на 35 – 40%, пресс-материала АГ-4В – на 20%.

Если труба изготовлена из АГ-4С, и σв = 9,75 МПа; σд = 5,1 МПа; νR = 0,095; νд = 0,3, то:

n0 = 9,75 / 5,1 = 1,91

У = (1,91 – 1) / √ 1,912·0,0952 + 0,32 = 2,5

По таблице для У = 2,5 находим α = 0,9938 или 99,38%.

При нагреве до 60 0С:

n0 = 0,6·9,75 / 5,1 = 1,147

У = (1,147 – 1) / √ 1,1472·0,0952 + 0,32 = 0,445

По таблице для У = 0,445 находим α = 0,672 или 67,2%.

Количественная оценка надежности показывает, что такое изделие эксплуатировать нельзя.

Повышения надежности можно достичь за счет улучшения прочности материала или усовершенствования технологии изготовления изделий, приводящих к понижению коэффициента вариации νв.

Из уравнения для У можно определить запас прочности:

n0 = (1 + У·√νR2 + νQ2 – У2·νR2·νQ2) / (1 – У2·νR2)


4. Оценка эксплуатационных свойств пластмасс по критерию эффективной удельной прочности

Примем за условный вес конструкции изделия вес, приходящийся на единицу длины l и единицу действующей нагрузки Q.

усл = q / (l·Q),

а за единицу прочности примем величину:

kв = l·R / q,

где    R – разрушающая нагрузка.

Из этих уравнений выводим:

усл = n / kв

Условный наиболее вероятный коэффициент запаса прочности с учетом вариации поперечного сечения изделия равен:

n0 = [1 + У·√νв2 + νF2 + νQ2 – У2 ·νQ2 ·(νв2 + νF2)] / [(1 – У2·(νв2 + νF2)]

Тогда можно записать, что средняя наиболее вероятная прочность материала равна:

k0σ = σв0 / γ,

где    γ – удельный вес материала.


Пусть q0усл ´= n0 / k0σ.

После подстановок получим:

q0´усл = 1 / k0σ·[(1-У2·(νв2F2)] / [1+У·√νв2F2Q2–У2·νQ2 ·(νв2F2)]

Знаменатель этой формулы называют критерием эффективной удельной прочности материалов:


0σ = k0σ · [(1-У2·(νв2F2)] / [1+У·√νв2F2Q2–У2·νQ2 ·(νв2F2)]

Из уравнения видно, что k´0σ учитывает неоднородность материала (νв), вариацию действующих напряжений (νQ), рассеивание размеров (νF) и заданную надежность α = Ф(У).

Упростив уравнение и приняв, что νQ = νF = 0, получим:

0σ = k0σ ·(1 – У· νв)

Оценка конструкционных свойств пластмасс по критерию эффективной удельной прочности показывает, что пластмассы резко отличаются по степени однородности. Из реактопластов наиболее неоднородны АГ-4С, АГ-4В, из термопластов – полиамиды 6 и 66. Если же перерабатывать пластмассы при оптимальных строго регулируемых режимах, то k´0σ имеет примерно равные значения при любых степенях надежности (У = 2, 3, 4). Это свидетельствует о том, что качество изделий при этих условиях, их прочностные свойства и однородность изделий значительно улучшаются.


Заключение

 

В процессе написания реферата мы ознакомились со статистическими методами оценки прочности пластмасс; оценкой прочности пластмасс с помощью вероятности разрушения по Серенсену; статистической оценкой прочности пластмасс по нагрузкам и оценкой эксплуатационных свойств пластмасс по критерию эффективной удельной прочности.


Литература

 

1. Альшиц И.Я. и др. Проектирование изделий их пластмасс. – М.: Машиностроение, 1979. – 248 с.

2. Зенкин А.с. и др. Допуски и посадки в машиностроении. К.: Техніка, 1990. –320 с.

3. Штейнберг Б.И. и др. Справочник молодого инженера-конструктора. – К.: Техніка, 1979. – 150 с.

4. Лепетов В.А., Юрцев Л.И. Расчет и конструирование резиновых изделий. М.: Химия, 1987. – 408 с.


Поиск по файловому архиву
Fast Reply  Оставить отзыв  Add File

Collapse

> Статистика файлового архива

Десятка новых файлов 
10 пользователей за последние 3 минут
Active Users 10 гостей, 0 пользователей, 0 скрытых пользователей
Bing Bot, Google.com
Статистика файлового архива
Board Stats В файловом архиве содержится 217133 файлов в 132 разделах
Файлы в архив загрузили 7 пользователей
Файлы с архива были скачаны 13156127 раз
Последний добавленный файл: Дельфин от пользователя admin (добавлен 2.1.2019, 21:39)
RSS Текстовая версия
Рейтинг@Mail.ru

Юхани СУУТАРИНЕН
финский биатлонист, двукратный серебряный призер Олимпийских игра в эстафете 4x7,5 км (1972, 1976), двукратный чемпион мира 1974 года.

То первенство планеты проходило в Минске, но советские спортсмены выиграли только эстафету, а в индив...
>>>
Смотреть календарь

В течение 24 мая на фронтах существенных изменений не произошло. >>>
Смотреть календарь

ХСТОРОННИЙ трёхсторонняя, трёхстороннее. 1. Имеющий три стороны. 2. С участием трех сторон (книжн.). Трехсторонний договор.

Принятие христианства на Руси

Взаимоотношения язычников и христиан в древнерусском обществе. Особенности христианизации Руси, личность Владимира Красное Солнышко, проблема "выбора веры", религиозная реформа в Киевской Руси. Итоги крещения ...